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ABSTRACT

State-of-the-art pattern recognition approaches like neural net-
works or kernel methods have only had limited success in
speech recognition. The difficulties often encountered include
the varying lengths of speech signals as well as how to deal
with sequences of labels (e.g., digit strings) and unknown
segmentation. In this paper we present a combined hidden
Markov model (HMM) and penalized logistic regression ma-
chine (PLRM) approach to continuous speech recognition that
can cope with both of these difficulties. The key ingredients
of our approach are N-best rescoring and PLRM with garbage
class. Experiments on the Aurora2 connected digits database
show significant increase in recognition accuracy relative to a
purely HMM-based system.

Index Terms— Speech Recognition, N-Best Rescoring,
PLRM, Garbage Class, Aurora2

1. INTRODUCTION

Although classification approaches like neural networks or
kernel methods achieve state-of-the-art performance in many
pattern recognition tasks, they have had limited success in
continuous speech recognition. There are at least two reasons
for this. First, in continuous speech recognition, the goal is
to predict a sequence of labels (e.g., digit strings or phoneme
strings) without knowing the segment boundaries for the la-
bels. Most existing neural networks or kernel methods clas-
sify samples using single labels only. Second, speech sig-
nals have varying lengths, while the majority of known neural
networks or kernels operate on vectors. The hidden Markov
model (HMM) framework deals effectively with both of these
issues, but suffers from incorrect model assumptions.

In [1], the authors presented a hybrid HMM/SVM ap-
proach for continuous speech recognition with the support
vector machine (SVM) using the N-best rescoring paradigm.
Their method addressed the above issues and slightly outper-
formed the conventional HMM approach, but the method had
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several weaknesses. Since the problem of segments (phones)
with varying lengths was solved by discarding all but a fixed
number of feature vectors, much information in the speech
signals were lost. Moreover, in the rescoring of the N-best
lists, sentences with deletion and insertion errors could not be
corrected.

Recently, a combined HMM/PLRM approach was pro-
posed [2] for continuous speech recognition. As with [1],
the procedure taken was to rescore N-best lists, but unlike
[1], a penalized logistic regression machine (PLRM) [3, 4, 5]
was used instead of SVM to obtain conditional probabilities
of segment labels, without discarding any of the feature vec-
tors. The PLRM directly models the conditional probabilities
of segment labels, and is in that sense more suited for N-best
rescoring than SVM. However, also this approach could only
correct substitution errors, and not deletion and insertion er-
rors.

In this paper, we present a combined HMM/PLRM ap-
proach that overcomes the problems with insertion and dele-
tion errors reported in [1] and [2]. We do this by introduc-
ing a garbage class in PLRM. Experiments on the Aurora2
connected digits database demonstrates the power of this ap-
proach.

The paper is organized as follows. In the next section we
review PLRM and introduce a garbage class with PLRM. In
Sec. 3 we explain how PLRM can be used to obtain condi-
tional probabilities of words given a segment, and in Sec. 4
we use these probabilities to rescore sentence hypotheses in
the N-best lists. Section 5 describes experiments performed
on the Aurora2 connected digits database, and finally, Sec. 6
contains the conclusions and a discussion on future work.

2. THE PENALIZED LOGISTIC REGRESSION
MACHINE

Let (x, y) ∈ X × Y be a random pair drawn according to
an unknown probability distribution p(x, y). In classification,
the label set Y is finite, and the goal is to find a mapping
h : X → Y that gives good prediction on any feature x ∈
X . Let K denote the number of classes and let each class be
represented by an integer in the set Y = {1, . . . , K}.
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Fig. 1. The nonlinear logistic regression model in PLRM.

The penalized logistic regression machine (PLRM) [3, 4,
5] makes an estimate p̂(y|x) of the conditional probability
distribution p(y|x) based on a set of training examples D =
{(x(l), y(l))}L

l=1. Deterministic prediction on a given feature
x is

ŷ = argmax
y∈Y

p̂(y|x). (1)

The conditional distribution for each class k is modeled
using a nonlinear logistic regression model with parameter
matrix W with rows wk, i.e.,

p̂k = p̂(y = k|x;W ) =
expwT

k φ(x; Λ)∑K
i=1 expwT

i φ(x; Λ)
, (2)

where φ(x; Λ) = [1, φ(x;λ1), . . . , φ(x;λM )]T is a vector of
M regressors augmented by the scalar 1, with the set Λ =
{λ1, . . . , λM} denoting their hyperparameter vectors. The
nonlinear logistic regression model in PLRM is illustrated in
Fig. 1, where for simplicity we write fk = wT

k φ(x; Λ).
Given a set of training data D = {(x(l), y(l))}L

l=1, the
parameter matrix W is estimated by minimizing

P log
δ (W ;D) = −

L∑
l=1

log p̂y(l) +
δ

2
trace ΓWΣWT , (3)

where the first term is the negative log of the logistic re-
gression likelihood, and the second term is a penalty term
weighted by a hyperparameter δ > 0. The matrix Γ is a
K × K diagonal matrix whose kth diagonal element is the
fraction of training samples with the kth class label, and Σ =
(1/L)ΦΦT , where Φ is an (M +1)×L matrix with columns
φ(x(l),Λ). For the convex minimization of (3), see [5].

2.1. PLRM with Garbage Class

In some applications, the classifier will be presented with fea-
tures x that do not correspond to any of the classes in the la-
bel set Y . In this situation, the classifier should return a small
probability for every class in Y . However, this is made impos-
sible by the fact that the total probability should sum to 1, that
is,

∑
y∈Y p(y|x) = 1. The solution to this problem is to intro-

duce a new class with label y = K+1 ∈ Y0 = Y ∪{K+1},

often referred to as a garbage class, that should get high con-
ditional probability given features that are unlikely for the
classes in Y , and low probability otherwise.

In order to train such a garbage class, a set of features la-
beled with the garbage label, or garbage features, are needed.
For applications with a low-dimensional feature set X , these
garbage features can be drawn from a uniform distribution
over X . For many practical applications however, X has a
very high dimensionality, so an unreasonable high number of
samples must be drawn from the uniform distribution in or-
der to achieve reasonable performance. In such cases, prior
knowledge of the nature or the generation of the possible
garbage features is of great value. We will see in the next
section how we can use N-best lists to generate garbage fea-
tures for speech recognition.

3. PROBABILISTIC PREDICTION OF SPEECH
SEGMENTS

Let x = (x1, . . . , xT ) be a sequence of T feature vectors ex-
tracted from a speech segment, and let y ∈ Y be the class
label of x, where Y is the vocabulary of subword labels (e.g.,
phonemes or digits), possibly augmented with a garbage la-
bel. In order to use PLRM for probabilistic prediction of
speech segments, we need to define a mapping φ which maps
a segment x into a vector φ(x; Λ). For this we use a set of M
hidden Markov models (HMMs); one HMM for each of the
subwords in the vocabulary, respectively, and possibly one
HMM for the garbage class. We choose

x �→ φ(x; Λ) = [1, φ(x;λ1), . . . , φ(x;λM )]T , (4)

where φ(x;λm) is the frame-normalized log-likelihood of the
mth HMM with parameter vector λm. To be more specific
with our choice of nonlinear mapping, let λ = (π,A, η) de-
note the parameters of an HMM; π = [πi] is the vector of
initial state probabilities, A = [ai,j ] is the transition probabil-
ity matrix, and η = {ηi} is the collection of the parameters of
the state-conditional pdfs. Then1

φ(x;λ) =
1
T
logmax

q
πq1p(x1; ηq1)

T∏
t=2

aqt−1,qt
p(xt; ηqt

).

(5)
where q = (q1, . . . , qT ) is a state sequence.

To gain additional discriminative power, it was proposed
in [6] to treat Λ = {λ1, . . . , λM} as a parameter of the model
(2) instead of just a hyperparameter of the nonlinear mapping
φ. Thus, the parameters of the model are W and Λ, and we
are interested in finding the pair (W ∗,Λ∗) that minimizes the
criterion in (3), i.e.,

(W ∗,Λ∗) = arg min
(W,Λ)

P log
δ (W,Λ;D). (6)

1This is actually an approximation to the frame-normalized log-likelihood

of an HMM. Nevertheless, since this is a common approximation in the

speech literature, we refer to this simply as the frame-normalized log-

likelihood.
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Although the function in (3) is convex with respect to W ,
it is not guaranteed to be convex with respect to Λ. A lo-
cal minimum can be obtained by using a coordinate descent
approach with coordinates W and Λ. For the convex mini-
mization with respect to W , we use the method in [5]. As for
the minimization with respect to Λ, there are many possibil-
ities, two of which are the steepest descent method in [6], or
the Rprop method [7] used in the experiments in this paper.

3.1. PLRM training for N-best Rescoring

An N-best list [8] is a list of the N most likely sentence hy-
potheses of a given utterance, and can be efficiently generated
from a set of HMMs. The sentence hypotheses are ordered by
their HMM likelihood, and each hypothesis is accompanied
by a segmentation, which is the most likely segment bound-
aries given the sentence.

The role of PLRM in our N-best rescoring approach is
to provide conditional probabilities of subwords given a seg-
ment. We choose to train a PLRM with garbage class, since
many of the segments in the N-best lists do not contain a com-
plete utterance of a subword. Some segments, for example,
contain only a part of an utterance of a subword, or even an
utterance of several subwords together. Hence, as mentioned
in the previous section, two sets of training data have to be
used; correct segments with the correct subword label, and
incorrect segments with the garbage label.

For many training databases for speech, we do not know
the segment boundaries for the data, only the orthographic
transcription. Then, the most straightforward thing to do would
be to estimate the segment boundaries. For this, we will make
use of a set of subword HMMs to perform Viterbi forced
alignment segmentation. Thus, from a pair (z, s), where z is a
sequence of feature vectors of a sentence s with Ls subwords,
we obtain a set {(x(1), y(1)), . . . , (x(Ls), y(Ls))} of subword
labeled segments. Doing this for all the pairs (z, s) in the
training database gives a set

Dcorrect = {(x(l), y(l))}l=1,...,Lcorrect (7)

of all correctly labeled segments.
Extracting garbage segments to be used in the training of

PLRM is more difficult. In the rescoring phase, segments that
differ somehow from the true unknown segments should give
small probability to any class in the vocabulary, and therefore
high probability to the garbage class. In order to achieve this,
we generate an N-best list for each training utterance, and
compare all segments within the list with the corresponding
forced alignment generated segments. The forced alignment
segmentation is used here since the true segment boundaries
are not known. The segments from the N-best list that have
at least ε number of frames not in common with any of the
forced alignment segments, are used as garbage segments for
training. This gives us a set

Dgarbage = {(x(l),K + 1)}l=Lcorrect+1,...,L (8)

of all garbage-labeled segments.

The full training data used to train the PLRM is therefore

D = Dcorrect ∪ Dgarbage. (9)

4. N-BEST RESCORING WITH PLRM

In the previous section we explained how PLRM can be used
to obtain the conditional probability of a subword given a seg-
ment. In this section we will see how we can use these proba-
bility estimates in continuous speech recognition by rescoring
and reordering sentence hypotheses of an N-best list.

For a given sentence hypothesis ŝ = (ŷ(1), . . . , ŷ(Lŝ))
with corresponding segmentation z = (x(1), . . . , x(Lŝ)), we
can use PLRM to compute the conditional probabilities p̂ŷ(l) =
p̂(y = ŷ(l)|x(l)). A score for the sentence can then be taken
as the following geometric mean:

p̂ŝ =
( Lŝ∏

l=1

p̂ŷ(l)

)1/Lŝ

. (10)

When all hypotheses in the N-best list have been rescored,
they can be reordered in descending order based on their score.

Alternatively, the score obtained from (10) can be inter-
polated with the HMM likelihood. Let p̂(ŝ|z) denote the pos-
terior sentence probability that can in theory be obtained from
the sentence HMM likelihood p̂(z|ŝ). The log of the weighted
geometric mean with weight 0 ≤ α ≤ 1 between the two con-
ditional probabilities can then be written as

Sŝ = (1− α) log p̂ŝ + α log p̂(ŝ|z) (11)

∝ (1− α) log p̂ŝ + α(log p̂(z|ŝ) + log p̂(ŝ)), (12)

since p̂(z) is constant for all hypotheses in an N-best list. Fur-
thermore, if we assume that p̂(ŝ) is constant we can write

Sŝ ∝ (1− α) log p̂ŝ + α log p̂(z|ŝ). (13)

It should be noted that the score in the right side above, unlike
the score in (10), cannot be interpreted as a probability, except
for α = 0, when the two scores are the same.

5. EXPERIMENTS

Experiments were conducted on the Aurora2 connected dig-
its database. This is a database of utterances, from different
speakers, of digit strings with lengths 1–7 digits. Training of
HMMs and the PLRM were done using the 8440 utterances
in the clean condition training set. As a test set, we chose the
clean data of test set A, which consists of 4004 utterances. For
the generation of the N-best lists, we used the set of HMMs
that were defined in the training script distributed with the
database. For PLRM training and rescoring, we had K = 12
classes including digit classes and silence, in addition to one
garbage glass. For each class, we used an HMM with 16 states
and 3 mixtures per state.

In the training of the PLRM we updated only the means
of the HMMs while keeping the other HMM parameters fixed.
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Fig. 2. Sentence accuracy on the test set for various δ.

For each of the coordinate descent iterations we used the Rprop
method [7] with 100 iterations to update the HMM means Λ
and the Newton method with 4 iterations to update W . After
30 coordinate descent iterations, the optimization was stopped
due to time limitations.

A 5-best list was used to extract the garbage segments
from the training set, with ε = 10. In the rescoring phase,
we also used a 5-best list. The list accuracy, i.e., the sen-
tence accuracy obtained with a perfect rescoring method, was
99.18%.

Figure 2 shows the sentence accuracy on the test set for
our approach (PLRM with garbage), compared with the ap-
proach taken in [2] (PLRM without garbage), and the Au-
rora2 default recognition system (baseline). We see that our
approach gives the best accuracy for the four values of the
regularization parameter δ (see Eq. (3)) we used in our exper-
iments. For lower values of δ, we expect a somewhat lower
sentence accuracy due to over-fitting. Very large δ values are
expected to degrade the accuracy since the regression like-
lihood will be gradually negligible compared to the penalty
term.

Figure 3 shows the effect of interpolating the HMM score
with the PLRM score as in (13). Note that with α = 0, only
the PLRM score is used in the rescoring, and when α = 1,
only the HMM score is used. The large gain in performance
when taking both scores into account can be explained by the
observation that the HMM score and the PLRM score made
very different sets of errors.

6. CONCLUSIONS AND FUTURE WORK

We have presented a combined HMM/PLRM approach for
continuous speech recognition. Our approach copes with the
sequence label problem with unknown segmentation by the
use of an N-best list. Moreover, we use HMM likelihoods
as input to PLRM and thereby address the problem of speech
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Fig. 3. Sentence accuracy using interpolated scores.

signals with varying lengths. With the use of a garbage class
in PLRM our approach does a good job in correcting deletion
and insertion errors, in addition to substitution errors. The
experiments show that the approach works well for a wide
range of δ values, and particularly well when the sentence
score obtained from PLRM is combined with the sentence
likelihood from HMM.

We have not discussed how to find the optimal values of
the hyperparameter δ and the interpolation weight α. This is
a topic for future research.
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