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ABSTRACT
In our prior work with Conditional Random Fields (CRFs),
we have shown that it is possible to achieve results in the pho-
netic recognition task with a CRF that approach the results of
a similarly trained HMM system (but with many fewer pa-
rameters), and we have shown that using two different feature
sets that are supposedly redundant gives an improvement in
the performance of the CRF. In this paper, we explore two
new areas with our CRF model. First, we show that by us-
ing two feature sets that are just transforms of each other, we
achieve an improvement of results in the CRF model. Sec-
ond, we show that by adding a single pass of realignment to
our CRF model training, we achieve an accuracy result in the
phone recognition task that is superior to that of an HMM
system trained with triphone labels, despite only training the
CRF on monophone labels with no explicit triphonic context.

Index Terms— Speech recognition, Stochastic elds

1. INTRODUCTION

Sequential Conditional Random Fields (CRFs) [1] are a math-
ematical model of sequences much like Hidden Markov Mod-
els (HMMs), but with some properties that are different from
HMMs that make them useful to examine for Automatic
Speech Recognition (ASR) applications. Unlike an HMM, no
assumptions of independence among input features are made
by a CRF. This allows many possibly redundant and overlap-
ping features to be used as input to the model without the need
to worry about decorrelating the inputs.
In the ASR domain, CRFs have been used for building

language models [2] and for phone classi cation [3]. In our
own prior work with CRFs, we have shown results for phone
recognition using neural net-derived phonological features as
inputs [4] as well as combinations of neural net-derived pho-
netic class posterior features and phonological posterior fea-
tures as inputs [5]. Our prior work showed that these CRF
models, trained only with monophone contexts, could achieve
results that were superior to HMM-based models that also
used only a monophone context and approached the results
of an HMM-based model trained using a triphone context.

In this paper, we have chosen to look at two areas of inter-
est that expand upon prior work. In our previous experiments,
our CRF models and HMM-based models were trained with
two related but different types of outputs from our neural net-
works. While the CRF models were trained directly with the
posterior outputs of the trained neural networks, the HMM
models were trained with a version of these same outputs that
were subjected to a non-linear transformation to decorrelate
the outputs from one another. While the claim for CRFs is
that this decorrelation is unnecessary, we test this claim by
examining the effect of using the decorrelated features as in-
puts instead of the posteriors. In addition, in our prior com-
parisons to the HMM-based model, the HMM models were
allowed to realign their training data during training, while
the CRF training data was xed to be the hand-transcribed
phonetic transcripts through the training process. Here we in-
vestigate the gains we can achieve by allowing realignment
during the training process.
We start with a brief overview of our CRF model. We

then discuss our experimental setup and our results from ex-
periments in feature combinations and in embedded training
of the CRF model. We end with a discussion of these results
and of our planned future work.

2. THE CRF MODEL

In this section we present a summary of our implementation
of the CRF model for these experiments. More detailed infor-
mation on our implementation of this model can be found in
[4] and [5].
As described in [1], a Conditional Random Field de nes a

posterior probability P (y|x) of a label sequence y for a given
input sequence x. We use the following form of the CRF as
our model:

P (y|x) ∝ exp
∑

i

(S(x, y, i) + T (x, y, i)) (1)

where
S(x, y, i) =

∑
j

λjsj(y,x, i) (2)
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and
T (x, y, i) =

∑
k

μktk(yi−1, yi,x, i) (3)

The CRF is described as a series of state feature functions
S and transition feature functions T . State feature functions
are of the form s(y, x, i), where y is an input label, x is an
input observation sequence, and i is an index pointing to a
position in the input sequence x. Each state feature function
has an associated weight λ, which indicates the importance
of this feature/label combination to the overall probability of
the label sequence. Transition feature functions are similar
to state feature functions, but take the form t(yi−1, yi,x, i),
which includes the value yi−1 of the label immediately pre-
ceding the current label yi. Each transition feature function
likewise has an associated weight μ.
For our model, the individual state feature functions use

the output of a multi-layer perceptron (MLP) neural network
that has been trained to output posterior probabilities for ei-
ther individual phone classes or phonological feature classes.
Our state feature functions are de ned as:

s/t/,f (y,x, i) =
{

NNf (xi), if yi = /t/
0, otherwise

where NNf is the output of the MLP for the feature f on
the speech frame i used as input. This sample state feature
function will evaluate to some non-zero value only when the
label on frame i is /t/ and the MLP outputs some non-zero
value for feature f when the frame xi is used as input. Note
that this gives us one state feature function for each label/input
feature pair.
In this model transition feature functions are binary, eval-

uating to 1 when the prior label and current label match the
values for the de ned function and 0 when the labels do not
match. Since at testing time we do not know which transitions
have occurred between a given pair of frames, we postulate all
possible transitions and use the Viterbi algorithm to nd the
transition path that maximizes equation (1).

3. EXPERIMENTAL SETUP

For these experiments, we make use of the TIMIT acoustic
phonetic corpus for all training and testing [6]. Phonetic fea-
tures and phone classes are extracted through the use of neu-
ral networks built using the ICSI QuickNet neural network
software package [7]. These neural networks were trained by
using 12th order PLP cepstral features plus delta coef cients
derived from the TIMIT training set as inputs. The neural net-
works were given a nine-frame window of these coef cients
centered on the middle frame as their inputs. One neural net-
work was trained to identify phone classes, with one output
for each of the possible 61 TIMIT phone labels. A set of
n-ary neural networks was also trained to classify individual
phonological features as shown in Table 1. These features are

derived from the International Phonetics Association (IPA)
phonetic chart. Labels for these features were derived from
the TIMIT phonetic labels via a one-to-one mapping for each
feature class represented by the labelled phone.

Table 1. Phonological features.

attribute possible output values
SONORITY vowel, obstruent, sonorant, syllabic, sil.
VOICE voiced, unvoiced, n/a
MANNER fricative, stop, ap, nasal, approx., nas. ap, n/a
PLACE lab., dent., alv., pal., vel., glot., lat., rhot., n/a
HEIGHT high, mid, low, lowhigh, midhigh, n/a
FRONT front, back, central, backfront, n/a
ROUND round, nonrnd, rndnonrnd, nonrndrnd, n/a
TENSE tense, lax, n/a

We then use these networks to derive phone class and
phonological feature class posteriors for the TIMIT training
set. These posterior outputs are used to train the CRF models.
To build our models, we use software derived from the Java
CRF package found on Sourceforge [8]. This package (and
our code) uses a quasi-Newton LBFGS algorithm to perform
the gradient minimization used to train the weights for the
CRF model. The training process is based on the work done
in [9] and uses their version of the forward-backward algo-
rithm to compute the gradient for log-likelihood minimiza-
tion. Training was performed using the training partition of
the TIMIT corpus. A small (17 speaker/136 utterance) de-
velopment set was split off from the TIMIT test partition and
used to determine when the CRF training should be stopped.
After the CRF models have been trained, the remainder

of the TIMIT test partition is used for evaluation. Features
derived from the test partition are fed into the CRF models
and lattices built from these CRF models are decoded using
the AT&T FSM toolkit [10]. The single best pass through the
lattice is determined and used to compare against the hand
labelled master label le. Results from the CRF are mapped
from the 61 TIMIT phone labels down to 39 phone labels fol-
lowing [11]. Note that no external duration modelling, phone
insertion/deletion penalties, or external language models are
applied to the CRF lattice to determine the best path through
the lattice.

4. FEATURE COMBINATIONS

In [4], we claimed that, unlike an HMMmodel, a CRF model
should not require us to perform a decorrelation of the input
feature vectors into the model.1 Our comparison of the CRF
and the HMM showed similar results for the CRF and the
HMMwhen the HMMwas using linear outputs from the neu-
ral network that had been decorrelated through a Karhunen-
Loeve (KL) transform, while the CRF used the posterior prob-

1Rather than decorrelation, one can use full or semi-tied covariance ma-
trices at an additional parameter cost.
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ability outputs from the same network. Therefore, we chose
to see if the same linear outputs processed with a KL trans-
form would give us the same results as the posterior outputs
for the CRF.
Table 2 shows the results. Here we see that for the

phone classi cation output, there is a slight but signi cant
(p ≤ 0.05) drop in accuracy when we use the transformed
linear outputs instead of phone posteriors. In addition, there
is a small but signi cant improvement in using the trans-
formed phonological feature linear outputs in place of the
posterior outputs. As an additional experiment, the linear,
non-transformed phonological feature outputs were used to
try to determine whether the improvement came from the
decorrelation, or from the use of the linear outputs them-
selves. The difference between the non-transformed linear
output and the posterior output is signi cant, but the differ-
ence between transformed linear output and untransformed
linear output is not signi cant. This indicates that the gain
achieved from changing from the posterior outputs to trans-
formed linear outputs occurs without the transformation and
would suggest that it is primarily the linear outputs and not
the decorrelation that is giving the improvement.

Table 2. Phone accuracy comparisons.

Model Feature Phone Phone
Space Accuracy Correct

Phone posteriors 61 67.32 68.81
Phone linear KL 61 66.80 68.45
Phone post. + linear KL 122 68.13 69.77
Phono. posteriors 44 65.45 66.86
Phono. linear KL 44 66.37 67.97
Phono. linear only 44 65.91 68.44
Phono. post. + linear KL 88 67.36 68.94

As described in [5], we have seen gains in our system ac-
curacy by adding in features that are supposedly redundant
features. Would using both the transformed linear outputs and
the posterior outputs of the same input features give us any
additional gain in our system accuracy? As shown in Table
2, both the phone classi cation output and the feature classi-
cation output show signi cant gains in accuracy when their
respective CRFs are trained on both posterior and linear out-
puts, despite the fact that there was no signi cant difference
between the phone classi cation CRF performance with ei-
ther of the two sets of features by themselves.

5. VITERBI TRAINING

In [4], we compared a CRF system for phone recognition
against a Tandem HMM system that had been trained with
the same inputs. Tandem HMM systems, described in [12],
are HMM-based models that use neural network outputs as
feature vector inputs. Our accuracy results for the CRF sys-
tem trained with monophone labels beat the HMM system

that used only monophone labels and compared favorably to
an HMM system using triphone labels. The CRF system,
however, had a number of disadvantages in its training that
the HMM system did not have. One of these disadvantages
was that the CRF training data was never realigned during the
training process, while the HMM training effectively allowed
for realignment. As such, the CRF was trained only with la-
bels as they were transcribed by the human transcribers, while
the HMM system was allowed to realign this data to make a
better t for training. We wanted to see if realignment of the
training data might have an impact on the CRF training.
To test this hypothesis, we rst trained CRFs for the data

using the hand-transcribed labels derived from the TIMIT
transcriptions. The training data was then passed through the
CRF recognizer and force aligned to the training data phone
label sequence. The best result of the forced alignment was
used as the labels for retraining the CRF, using the previously
learned weights as seed weights and allowing more iterations
of gradient minimization against the new labels to modify the
weights.
These results are shown in Table 3. A comparison to the

results of a Tandem HMM system trained with triphone la-
bels and with both 4 and 16 gaussian mixture models per
state as described in [4] is also shown. The CRF trained with
61 phone class feature outputs and one pass of realignment
achieves an accuracy result signi cantly better (p ≤ 0.05)
than either of the 4 or 16 gaussian mixture Tandem systems.
The CRF achieves these accuracy results with far fewer pa-
rameters than either Tandem HMM (the CRF has roughly
5200 parameters while the 16 mixture Tandem system uses
1.7 million parameters). For the phonological feature CRF,
realignment achieves a result that is slightly worse than the 4
mixture HMM Tandem system, but not signi cantly worse.
In addition, we show results for the CRF system trained

with both posterior and linear features for completeness with
the previous section. A comparable version of the HMM
model has not been trained as it is not clear how the combina-
tion of these features together for the HMM model should be
performed – the purpose of using the linear, KL-transformed
features for the HMM in the rst place was to provide the sys-
tem with decorrelated features for processing. We do note,
however, that the HMM system shown here uses over two
million parameters, not including the MLP neural network
weights. In contrast, the CRF uses only slightly more than
8200 parameters in addition to the neural network weights
and is trained using only monophone labels, yet achieves a
signi cant (p ≤ 0.05) improvement in performance over three
of the four HMM models and achieves the same performance
as the 16 mixture, phonological feature model.
Finally as a comparison, we show results for a CRF

trained using a set of labels aligned using the 16 mixture
model HMM trained for the features. The HMM-aligned sys-
tem shows results comparable to the CRF trained with TIMIT
hand labels and no realignment, indicating that our improve-
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Table 3. Phone accuracy comparisons with realignment.

Model Labels Features Realign? Phone Acc. Phone Corr.
Tandem HMM Phone linear KL (4gmms) triphones 61 yes 68.07 73.88
Tandem HMM Phone linear KL (16gmms) triphones 61 yes 69.34 75.62
CRF Phone posteriors monophones 61 no 67.32 68.81
CRF Phone posteriors monophones 61 yes 69.92 72.74
CRF Phone post. + linear KL monophones 122 yes 70.10 73.25
CRF Phone posteriors / HTK alignment monophones 61 no 66.76 67.54
Tandem HMM Phonological linear KL (4gmms) triphones 44 yes 68.30 73.58
Tandem HMM Phonological linear KL (16gmms) triphones 44 yes 69.13 75.00
CRF Phonological posteriors monophones 44 no 65.45 66.86
CRF Phonological posteriors monophones 44 yes 67.81 70.97
CRF Phono. post. + linear KL monophones 88 yes 69.13 72.07
CRF Phonological post. / HTK alignment monophones 44 no 65.99 66.89

ment is not just due to the change from using hand-aligned
TIMIT labels.

6. DISCUSSION AND FUTUREWORK

In this work, we have shown some simple extensions of our
CRF model for phone recognition that make use of transfor-
mations of the input features. These features are redundant
and highly correlated, yet we have shown some signi cant
improvements in recognition accuracy by making use of this
redundant data without performing any decorrelation. This
supports the work that we showed in [5], where phonological
feature posteriors and phone class posteriors were combined
to show improved results for the CRF model without apply-
ing any form of decorrelation. These two experiments give us
some level of con dence that we will be able to add other fea-
tures extracted from the signal, even if those features provide
information that is redundant with the information we already
have and not hurt the overall performance.
In addition, we have shown that by allowing realignment

of the training data for this system, we can improve our phone
recognition accuracy to be superior to that of a triphone-
labelled HMMmodel but without explicitly incorporating any
triphone context. Another possible enhancement would be to
allow the MLP neural networks to be retrained according to
the best alignment of the CRF model, and to run cycles of
alternating neural network retraining and CRF retraining.
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