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ABSTRACT

A new maximum likelihood training algorithm is proposed that com-
pensates for weaknesses of the EM algorithm by using cross-validation
likelihood in the expectation step to avoid overtraining. By using a
set of sufficient statistics associated with a partitioning of the training
data, as in parallel EM, the algorithm has the same order of compu-
tational requirements as the original EM algorithm. Analyses using
a GMM with artificial data show the proposed algorithm is more ro-
bust for overtraining than the conventional EM algorithm. Large vo-
cabulary recognition experiments on Mandarin broadcast news data
show that the method makes better use of more parameters and gives
lower recognition error rates than EM training.

Index Terms— EM training, overtraining, cross-validation

1. INTRODUCTION

A general problem in model estimation is overfitting to the training
data. When maximum likelihood (ML) estimation is used, training
set likelihood increases with the number of model parameters. How-
ever, the difference in likelihood of the training data and new data
also grows. In other words, the model loses the ability to generalize.
This problem can be more severe with unstable (high variance) clas-
sifiers, i.e. those that can lead to very different results for different
randomly selected training sets. A variety of methods have been pro-
posed for addressing this problem, including information-theoretic
criteria, such as the Bayesian information criterion (BIC) and mini-
mum description length (MDL) that trade-off likelihood gain and a
penalty function related to the number of free parameters, and data-
driven techniques such as cross-validation (CV) and bootstrapping
[1].

When a model includes hidden variables, such as in a hidden
Markov model (HMM), it is difficult to solve the ML problem di-
rectly, and the iterative expectation-maximization (EM) algorithm is
used [2]. A complication with the EM algorithm is that there is in
general no guarantee of reaching a global optimum, and local op-
tima can at times be problematic, particularly with small training
sets. For models that incorporate Gaussian mixture distributions,
there is a further complication: the EM algorithm can be unstable.
For example, a two-mixture Gaussian distribution gives arbitrarily
large likelihood for training data if one of the Gaussians covers only
one data point with very small variance and the other Gaussian spans
the rest of the data points. Obviously, such a model is not desirable.
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A simple heuristic solution is to limit the likelihood by flooring vari-
ances of Gaussian components with a threshold [3], but the threshold
needs to be tuned empirically since a large threshold increases class
confusability and a small threshold may not eliminate the problem.

While information-theoretic model selection techniques have
proved useful in the model selection problem for HMMs [4, 5], they
do not address the potential problem of instability. CV has been used
within decision tree design for improving question selection and de-
termining size [6], which in turn determines model complexity via
distribution tying. Here, we take this idea further, proposing a vari-
ation of the EM algorithm that incorporates CV within the iterative
procedure, referred to as CV-EM. A key difference is that, rather
than use CV for model selection, it is used in CV-EM to reduce the
bias of the sufficient statistics and thereby improve the parameter es-
timates. Using parallel training techniques, the CV-EM algorithm is
similar in complexity to the standard EM algorithm.

To analyze the basic behavior of the algorithm, the proposed
method is first applied to train GMMs using artificial data and the
model performance is evaluated by calculating likelihood for new
data. In the analysis, it is shown that the models trained by CV-EM
give similar or higher likelihood than EM. CV-EM is more robust for
overtraining than EM and provides a means to automatically decide
the optimal number of iterations.

CV-EM is then applied to large vocabulary recognition exper-
iments on Mandarin broadcast news. The speech recognition ex-
periments show that CV-EM provides more stable performance as a
function of model size and it improves overall system performance.

The algorithm is introduced in the next section, followed by the
analyses using GMMs with artificial samples and the experiments
using HMMs in Mandarin broadcast news speech recognition. Alter-
native applications and open questions are raised in the discussion.

2. CROSS-VALIDATION EM TRAINING

For distributions in the exponential family, the EM algorithm iterates
between two steps:

• E-step: given the observations O and the current model pa-
rameters θ(p), compute the expected sufficient statistics t(p) =
E[t|O, θ(p)] associated with the hidden variables.

• M-step: Use these statistics to update the model parameters
θ(p+1) in ML estimation, as if they were based on the ob-
served variables.

(Examples of sufficient statistics t are the first and second order sam-
ple averages for a Gaussian, which are weighted by the state occu-
pancy posteriors to get t(p) in an HMM.) Because the E-step and
the M-step use the same training data, the algorithm is susceptible
to reinforcing bad choices, such as assigning too few samples to a
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Fig. 1. Parallel EM training. SS(i) denotes the sufficient statistics
for the i-th data subset.

Gaussian mixture component with high likelihood or a poor state
alignment in HMM modeling. The key idea behind the proposed
CV-EM method is to compute the sufficient statistics of subsets of
data using a model that was estimated from an independent set of
data. Since there is no overlap in the data used for the E-step and the
M-step, we reduce the potential for overfitting.

2.1. Algorithm

The procedure of CV-EM training is similar to that for parallel EM
training [7]. In parallel EM training (Figure 1), the training data
is partitioned into K subsets, sufficient statistics are independently
calculated for each subset in the E-step, and then accumulated. The
model parameters are updated in the M-step. In CV-EM, the parti-
tion is leveraged to efficiently design multiple models, as shown in
Figure 2, so that the M-step and E-step procedures use different data.
Specifically, the first E-step is identical to the parallel EM algorithm,
and K sufficient statistics files are computed for the partitions. Then,
instead of making a single model by accumulating all the sufficient
statistics, K cross-validation models are generated by excluding the
sufficient statistics from one subset. Each cross-validation model is
used in the E-step to estimate the new sufficient statistics for the data
subset that has been excluded from the parameter estimation of that
model. The E-step and the M-step are repeated as in conventional
EM training, and the final model is obtained by merging all the suf-
ficient statistics.

The use of K-fold CV in the EM updates has the potential prob-
lems of a pessimistic bias and higher variance associated with using
a smaller effective training set for each model. However, the prob-
lems of data fragmentation are minimal, because the model is esti-
mated from a large fraction (K − 1)/K of the data. In addition, the
increase in expected error can be offset by a reduction in error asso-
ciated with avoiding an optimistic (overfitting) bias and problematic
local optima. Probability distributions that are highly specialized to
a particular data point cannot earn large likelihood, since the data
point used in the M-step does not appear in the E-step. Thus, the
inclusion of K-fold CV within each iteration of EM makes the algo-
rithm as a whole more robust to the problem of local optima, though
there is still no guarantee of convergence to a global optimum.
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Fig. 2. CV-EM training. M(i) denotes the i-th CV model estimated
without using the i-th data subset.

2.2. Implementation Details

In general, K-fold CV requires making K models, which will in-
crease the overall computational cost by a factor of K if these mod-
els are separately trained from scratch. However, that increase can
be mostly avoided by using sufficient statistics. For training sets that
are large compared to K, the overall computational cost of CV-EM
is mostly determined by computing the K sets of sufficient statistics
in the E-step, which has the same computational complexity as that
of EM. The K cross-validation models are obtained by subtracting
the corresponding sufficient statistics from the overall sum without
repeating their accumulation. The storage requirement is mostly de-
termined by the collection of sufficient statistics files and is linear in
K.

Since there are multiple models trained with hidden variables, a
potential problem is that the models could learn different interpre-
tations of these variables that would be lost in the combination of
the sufficient statistics from different models. To illustrate with a
more concrete example, if Gaussian mixture models are trained in-
dependently, merging the statistics estimated from different models
would not make sense, because there is no correspondence between
a specific mixture component in one model vs. another. This prob-
lem is avoided by initializing the algorithm with a single model and
by having a sufficiently large K so that the different models have
a large amount of data in common, so it is less likely that they di-
verge drastically in interpretation of hidden variables. Note that for
K-fold CV-EM training, any combination of two cross-validation
models share (K − 2)/(K − 1) of their training data, or 95% for
K = 21.

3. EXPERIMENTS

3.1. Simulated Data

Analyses were performed using training and test data sampled from
4-dimensional 8-mixture Gaussian distributions whose component
diagonal Gaussians and weights were randomly defined. GMMs
with 8 mixture components were trained by first initializing their pa-
rameters using the global mean and variance and then applying the
CV-EM or the EM algorithm. The models were trained with differ-
ent training set sizes and different numbers of CV folds. The perfor-
mance of the models were evaluated by likelihood calculated for the
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Fig. 3. Test set likelihood of GMMs trained by EM and CV-EM with
varying training set sizes.

test sets with 1000 samples. To eliminate the randomness of the re-
sults, the experiments were repeated for 100 times for each training
condition using data sampled from the different random population
distributions and their likelihood was averaged.

Figure 3 shows the test set likelihood of the GMMs trained by
the EM and the CV-EM algorithms with varying training set sizes as
a function of the number of the iterations. The zeroth iteration means
the likelihood is evaluated using the initial model. The number of
CV folds K for the CV-EM training was 10. For CV-EM training,
general models that integrate all the K sufficient statistics were gen-
erated at each iteration along with the CV models and used for the
evaluation. When the same initial model is used, CV-EM gives the
same general model as EM for the fist iteration since the first E-step
gives the same results. The difference of the two algorithms appears
after the second iteration.

As can be seen in the figure, CV-EM training always gives about
the same or higher likelihood than EM training. The most prominent
advantage of CV-EM is the stability for the large training iterations.
Although it is guaranteed for EM that it always increases the train-
ing set likelihood at each iteration, it does not hold for the test set
likelihood. Especially, when the training data is small, the algorithm
tends to make the model specialized for particular training samples
and the generality of the model is lost as the iteration proceeds. As
a result, the test set likelihood first increases but then begins to de-
crease after reaching an optimal point. As shown in the figure, CV-
EM training is not completely free from overtraining, but it is much
more stable than EM training. Because a large number of iterations
can be safely specified, the stability is useful when the optimal num-
ber of iterations is not known and when composite models (such as
HMMs with GMM observation distributions) have components that
may benefit from different numbers of iterations.

Figure 3 also shows that, as the training set size increases, the
difference of the likelihood after EM vs. CV-EM training becomes
small. In other words, the problem of overtraining is minor when a
large number of training samples is used relative to the number of
model parameters.

Figure 4 shows the training set likelihood obtained in the E-step
of the EM and the CV-EM training. Because the E-steps are par-
allelized, the likelihood is obtained as a weighted average of their
output. The zeroth iteration means the first E-step that uses the ini-
tial model. Unlike the EM training, the CV-EM likelihood is not
monotonic with the number of iterations. While the EM likelihood
increases as the training set size become small, CV-EM has smaller
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Fig. 4. Training set likelihood obtained in the E-step.
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Fig. 5. Model performance as a function of number of CV folds (K).

likelihood for the smaller training set. In other words, the E-step
likelihood of the CV-EM training has a similar trend as the test set
likelihood. This is because the CV-EM likelihood is calculated for
each data subset using a model that is estimated without using that
subset and thus is more reliable. The likelihood by EM and CV-
EM training is similar when large training set is used, because the
model parameters and the likelihood are estimated properly regard-
less of the method. This property of the CV-EM likelihood makes it
possible for CV-EM to automatically decide the optimal number of
iterations. This possibility is investigated in [8].

Figure 5 shows the model performance as a function of the num-
ber of CV folds K. The GMMs were trained with different numbers
of CV folds for the same training set. The CV-EM training was iter-
ated for 10 times. When small K is used, the effective training set
size becomes small and the model performance degrades especially
when small training set is used.

3.2. Speech Recognition

Speech recognition experiments were conducted using training data
consisting of Mandarin Hub4 and the broadcast news programs from
the TDT4 corpus. The total amount of training data was 97 hours.
The development and test set were the dev04 and eval04 of the Man-
darin RT-04 and included half an hour and one hour of broadcast
news programs, respectively. The experiments build on the Deci-
pher recognition system for Mandarin broadcast news [9], using a
slightly simplified version with a trigram language model and max-
imum likelihood acoustic model training. The dictionary included
49k words. Acoustic models were word internal, tied-state triphones
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Table 1. CER for development set and evaluation set

Model Dev04 set Eval04 set

# states # mixes EM CV-EM EM CV-EM

2500 32 8.8 9.2 18.9 18.9

5000 32 9.3 9.1 18.9 18.8

1800 128 9.1 8.8 18.8 18.4

3000 128 9.4 8.9 18.7 18.6

6000 128 9.9 9.6 19.7 18.6

with untied mixture weights. A small variance floor was used (10−20),
which was the standard configuration for this system. Vocal tract
length normalization and speaker adaptation were applied. Evalua-
tion was based on character error rate (CER). The baseline models
were trained using the parallel EM algorithm. CV-EM training used
a number of CV folds of K = 21. The training data was randomized
before the partitioning for the CV-EM training.1 The same number
of the iterations (five) was used for both methods using the same
Gaussian mixture HMM as the input.

Table 1 shows the CER for the development and evaluation set
of the speech recognition experiments. The system parameters were
tuned for the EM-based models with the development set, and the
same settings were used for the models trained by the proposed
methods. CV-EM gives better results than EM when the models are
relatively large and is more robust for data sparsity. By choosing
optimal model sizes on the development set, CV-EM leads to 2.6%
relative CER reduction on the evaluation set from 18.9% to 18.4%,
which is statistically significant at the level of p=.021 using the NIST
Matched Pairs Sentence-Segment Word Error (MAPSSWE) test.

4. DISCUSSION

In summary, we have explored the use of CV within the EM algo-
rithm as a means of providing more robust parameter estimates. We
experimentally analyzed the algorithm using GMMs with artificial
data and showed it gives the similar or higher test set likelihood than
EM and is stable for overtraining. In addition, it gives reliable likeli-
hood in the E-step that can be used to predict the optimal number of
iterations. We also evaluated the approach in training large HMMs
with Gaussian mixture distributions and achieved small gains in er-
ror rate over standard EM with roughly the same computational re-
quirements as the standard EM algorithm.

The same CV idea can be applied to other iterative training meth-
ods that can be parallelized using sufficient statistics such as dis-
criminative training [10, 11]. Since discriminative training aims
at eliminating the difference of likelihood-based optimization and
error-rate-based evaluation, and CV training is intended to reduce
the error of the parameter estimates, the two approaches are com-
plementary. The CV-EM process is somewhat analogous to cross-
adaptation [12], which uses statistics from different models repre-
senting different views of the same data. It would be interesting to
assess whether similar gains could be achieved with a single model
if the same CV-EM ideas are applied within the transform estimation
process [13].

The results here represent an empirical advance, but the theoret-
ical basis remains to be explored. While we have an intuitive argu-

1We also experimented with constraints in the CV partitioning that forced
all utterances from the same speaker to be in a single subset to ensure inde-
pendence of the subsets, but no additional improvement was obtained.

ment for why the CV-EM strategy is useful within the EM frame-
work, the proof of convergence for the EM algorithm no longer
holds since CV-EM can decrease the likelihood of the training data.
However, there are conditions under which iterative estimation al-
gorithms may converge without guaranteed likelihood increases at
each step [14], which may be relevant to this question.
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