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ABSTRACT

Example based speech recognition is critically dependent on the
quality of the acoustic distance measure between input and reference
vectors. In the past, the commonly used Euclidean distance has been
refined to take into account the covariance of the different sounds,
resulting in a class dependent distance measure. However, using
the same measure for the whole class is still too crude: vectors in
the tails of the distribution (outliers) are unduly considered equally
representative of the class as those in the centre.

In this paper, we derive two techniques inspired by non-para-
metric density estimation that explicitly adjust the distance measure
based on the position of the reference vector in its class. Experiments
on three low-level acoustic tasks show that “data sharpening” results
in a substantial improvement, while “adaptive kernels” have minimal
effect.

Index Terms— Example based recognition, DTW, Adaptive ker-
nels, Non-parametric density estimates

1. INTRODUCTION

Speech recognition research has been dominated by Hidden Markov
Models (HMMs) for over a quarter century. This enormous research
effort has produced many valuable extensions to the basic framework
of modeling speech as a succession of (hidden) independent stable
states. These extensions, in conjunction with the good scalability
of the HMM framework, have allowed the successful deployment of
state-of-the-art HMM recognizers in commercial applications. Still,
there is a growing research community that is frustrated by the limi-
tations that lie at the heart of the HMM framework [1].

Over the past few years we have been working on a revival of
example based speech recognition —a.k.a. dynamic time warping
(DTW), template based recognition or episodic modeling— as an
alternative to HMMs [2, 3, 4, 5]. Example based recognition offers
a natural solution to some of the problems HMMs face, especially
those related to long-term sequential modeling [5]. Since the two
approaches are quite similar, many of the engineering solutions from
the HMM framework can be ported to example based recognition.

In HMMs the acoustic scores in essence are a complex (based on
e.g. Gaussian mixtures) weighted distance between the test vectors
and the state mean vector, while in DTW the distance between the
test vectors and their nearest neighbours in the reference database
is relevant. Hence outlier reference vectors will have a much larger
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impact in a DTW based system than in HMMs as each individual
outlier is considered a fully acceptable representation of the class.

In [2] we showed that a class based weighted distance measure
improves significantly over the more traditional Euclidean distance
metric. In this paper we refine this approach with some ideas bor-
rowed from the domain of non-parametric density estimation that
explicitly compensate for the position of a reference vector in its
class.

2. LOCAL DISTANCE MEASURES

2.1. Between-frame distances: a probabilistic view

The local distance measure proposed in [2] extends the Euclidean
distance with a local scaling (covariance matrix):

d(x;y) = (x — y)T8.  (x —y) + log |5, (1)

with x an input frame, y a reference frame and fic an estimate of
the covariance matrix of the class c¢ to which the reference frame
belongs. In [2] the mapping y +— ¢ was obtained from a state-level
database segmentation by tree-clustered context dependent HMMs,
since that information was readily available. Entirely example based
methods to estimate the data covariance, such as the one used in [6],
could be used as well.

For the remainder of this discussion, it is more appropriate to
use a probabilistic view of the scaled local distance:

Definition 1 The (M -variate) Gaussian kernel function r(z;X)
with scaling matrix X is given by

k(z;8) = 1ZTE_IZ) . 2)

1
S
Gl p( 2

Definition 2 The local Mahalanobis distance between an input x
and a database vector'y belonging to class c is

dear(xiy) = —log (k(x—yiZ0)). 3)
The above definition of the local Mahalanobis distance adds a con-
stant scaling factor and additive term compared to equation 1. This
is of no importance in our recognizer as both the offset and the scale
factor are identical for all templates.

The explicit change of terminology is useful when discussing
example based recognition in the light of related statistical model-
ing techniques. Especially comparisons with non-parametric den-
sity estimation, where it is common to view each sample as a kernel
centered around the sample, provided valuable inspiration.
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Definition 3 The Parzen density estimator or kernel density esti-
mator f(x) with an arbitrary kernel function K and bandwidth or
window width h based on n samples y7 is

fx) = n,iM ZZ:‘:K (%(x - yi)> : “

For our DTW system, the kernel function was always set to the
Gaussian kernel x(z; X.).

It should be stressed that, although in the following we will dis-
cuss techniques from Parzen density estimation and perform some
basic classification experiments, the final DTW problem differs sig-
nificantly from both Parzen density estimation and nearest neighbour
classification. We are looking for neither the average kernel score
(Parzen) nor the maximal kernel score (nearest neighbour classifica-
tion). In DTW recognition, each frame is part of a template, and the
ultimate recognition is based on template scores while the local dis-
tance is defined between frames. Averaging (cf. forward pass score)
or maximizing (cf. Viterbi score) is only done at the template level
and final recognition at the sentence level.

2.2. Adaptive kernels

In Parzen density estimation —in fact in most smoothing estima-
tors— there is a well-known trade-off between correctly modeling
the tails (or in general any low-density regions) of a distribution and
capturing sufficient detail in the main part of the distribution [7].
Since the distance between kernels is larger in the tails, a large band-
width is needed to “hide” the individual observations in the tails
which cause a noisy estimate. However, large bandwidths will over-
smooth the main part of the distribution.

Breiman et al. [8] proposed adaptive kernel estimates as a solu-
tion to this problem in the context of Parzen density estimation. In
an adaptive kernel estimator, each kernel has a different bandwidth
that is proportional to some local density estimate called the pilot
density. Breiman et al. used k nearest neighbours (kNN) estimators
for the pilot density, but they also showed that the method is robust
with respect to the exact pilot density.

A general algorithm for adaptive kernel estimation is given in

[7]:

Step 1 Find a pilot estimate f that satisfies f (y:) > O for all ref-
erence vectors y;.

Step 2 Define local bandwidth factors \; by
xo={fvo)/s} )

where g is the geometric mean of the f (y:) values:

n 1/n
o= (170

and « is the sensitivity parameter (0 < o < 1).
Step 3 Define the adaptive kernel estimate (x) by

n

. 1 1 1
fx) == > (h,\,;)MK (m(x— yi)) )

i=1

In high-dimensional spaces most samples are located in the tails
of the distribution [7]. Since acoustic vectors in speech recognition
are typically of length 20 or more, a DTW setup will suffer from

class \;
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e
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Fig. 1. Schematic motivation for data sharpening using rectangular
kernels: the original, adaptive, skewed and shifted kernels are drawn.

problems related to heavy-tailed distributions. Hence we expect that
making the kernels adaptive in the local distance measure will alle-
viate some of these problems. In our experiments with real speech
data, a kNN density estimate was used as a pilot distribution. Defi-
nition 2 is thus extended to

Definition 4 The adaptive kernel local Mahalanobis distance be-
tween an input X and a database vector'y of class c is defined as

—log (n(ix; y;zc)) , @)
y

with Ay the local bandwidth factor for database vector'y.

dakrm(x;y) =

2.3. Data sharpening: adjusting the kernel means

The use of adaptive kernels results in wide kernels in low density ar-
eas, meaning the distance to these kernels varies more slowly. How-
ever, the (symmetric) kernels in the tail are smoothed both towards
the center (the more likely region) and away from the center, where
there are very few or no data points. As a result, the region where
the maximal kernel density for a class is non-negligible is enlarged.
Having a larger likely area may mean higher confusability/overlap.
Therefore, adaptiveness can easily overshoot the intended smoothing
of the tail estimates.

Figure 1 sketches the problem. A possible remedy would be
to skew the kernel function towards the class mean (schematically
shown as the full-line triangle in the figure). However, as this implies
giving up the symmetry of the kernels, such a solution would be
complex.

Instead, we propose a shift of the kernel means towards the cen-
ter of the class to shrink the likely area. To this end, each kernel
mean is transformed by

A =
U(yi) = T JZ:;)Y(W (8)

with y(;y the jth nearest neighbour (in local Mahalanobis sense) of
yi within the same class, and y (o) being y; itself. For all our exper-
iments, we used the same k nearest neighbours as for the calculation
of the pilot estimate.

Similar methods can be found in the literature. Fukunaga and
Hostetler [9] were the first to use an iterative version of this idea in
cluster analysis. Their approach, called mean shift was later formal-
ized and shown to be a general method which includes, for example,
the popular k-means clustering algorithm [10]. Choi and Hall [11]
used the same idea as a preprocessing step for non-parametric den-
sity estimation, calling it data sharpening.

3. EXPERIMENTS

To evaluate the effectiveness of the proposed extensions, the Eu-
clidean, local Mahalonobis and adaptive kernel local Mahalanobis

IV - 434



651

Euclidean
— — —local Mahalanobis (LM)
601 adaptive kernel LM (AKLM)

% neigbours of correct label

No data sharpenihg

200 400 600 800 1000

number of nearest neigbours (frames)

Fig. 2. Percentage of nearest neighbour frames of the correct phone
identity for an increasing number of neighbours.

distances, each with and without data sharpening, are compared on
three different low-level acoustic tasks: frame-based phone classifi-
cation, template-based phone classification and phone string recog-
nition.

3.1. Experimental setup

All experiments are evaluated on the November 92 5k WSJ bench-
mark. The SI-84 WSJO database, which contains about 15 hours
of noise-free read speech, is used for training. The training database
contains about 4.5 million speech frames (excluding silence frames),
and the test set about 175000. Both the training database and the test
set were segmented using the same HMM system. This HMM uses
1078 cross-word context-dependent tied states which share a pool
of 17932 diagonal covariance Gaussians. 25 dimensional feature
vectors were obtained by means of a mutual information based dis-
criminant linear transformation (mida) on 24 MEL spectra and their
first and second order time derivatives [12].

We used a set of 43 phones, based on the cmu v0.6d phonetic
lexicon. All experiments use diagonal covariance matrices 3., where
the class assignment is based on the state segmentation from the ref-
erence HMM system. The data sharpening step is performed using
the same class assignment. The number of nearest neighbours k
used for both the pilot distribution and the data sharpening was fixed
at [y/n |, with n the number of samples in a class.

3.2. Frame classification

A first experiment looks at the nearest database frames for each non-
silence frame in the test set (silence frames are classified nearly
100% correctly, hence results would be strongly dependent on the
cutoff length of the recordings). Figure 2 shows the percentage of
those neighbours that have the correct phone label for an increasing
number of neighbours.

The results clearly show that data sharpening is extremely ben-
eficial for classification. Contrary to the behaviour in continuous
speech recognition the Euclidean distance performs best for a small
number of nearest neighbours. However, as the distances get larger,
the local Mahalanobis scaling increasingly outperforms the Euclidean
distance. Adaptive kernels have a beneficial effect for the smaller
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Fig. 3. Percentage of nearest neighbour templates of the correct
phone identity for an increasing number of neighbours.

distances, but their performance gets asymptotically closer to non-
adaptive kernels as the distances get larger.

Single best frame classification correctly identifies 60% of the
frames. In comparison, HMM based frame classification (using the
sum of all state likelihoods of a phone and the phone occurence in
the training database as a prior) achieves 63% correct classification.
Note that if frame classification was the primary goal, better results
could be obtained by means of kNN voting or real Parzen density
estimation. However, those results would not be relevant for DTW
based continuous speech recognition, since the basic unit is the tem-
plate, whose score is based on the individual kernel scores of all its
member frames.

3.3. Phone classification

The phone classification task uses small DTW alignments between
each non-silence phone segment of the test set and all phone seg-
ments of the database. This task is more relevant to example based
recognition, since now the temporal dependencies imposed by the
templates become relevant.

Figure 3 shows the percentage of correct neighbours for an in-
creasing number of neighbours. The results are very similar to those
of the frame classification experiment, although the advantage of the
scaled distances over the Euclidean distance is more pronounced.

3.4. Phone string recognition

In the phone string recognition experiment, the complete test sen-
tence is used as input, and the recognizer finds the most likely tem-
plate string. The search space is limited by bottom-up template se-
lection, as described in [3]. The recognizer uses context dependency
based on template concatenation costs as in [3], as well as a 3-gram
phone transition model.

Table 1 shows the phone error rate for these experiments. Again,
the difference between the results before and after data sharpening
are highly significant. When no data sharpening is performed, the
scaled distances perform better than the Euclidean distance mea-
sure. However, this advantage vanishes almost completely after data
sharpening.
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No data sharpening Data sharpening
Eucl. | LM | AKLM | Eucl. | LM | AKLM
21.6 | 18.7 18.1 144 | 143 14.0

Table 1. Phone error rates for the different distance measures, with-
out and with data sharpening.

To place the DTW phone recognition results in perspective, we
also compared the results with those obtained by classical HMM
systems. The HMM system used to segment the training database
(see section 3.1) achieved a phone error rate of 16.7% on the same
task. A more complex HMM (36-dimensional features and 1818 tied
states) improves that score to 14.9%. While these results show the
DTW system is certainly competitive, there are some caveats: the
DTW system is gender-dependent (both in the acoustic scaling and
through extra template concatenation costs [3]), while the HMM sys-
tem doesn’t use explicit gender information. Furthermore, the DTW
system uses multiple successive phone templates from the original
recordings as often as possible, which to some extent corresponds to
longer-span phone transition models.

4. DISCUSSION AND FUTURE RESEARCH

The most remarkable experimental result is the very large improve-
ment caused by data sharpening, which is confirmed in all three
tasks. Data sharpening causes large shifts towards the class mean
for outliers, while vectors in the main part of the distribution stay
near their original location. The resulting distribution is therefore
compacted. The degree of compaction can be controlled by varying
k in equation 8. k = 1 causes no sharpening, while K = n maps
all kernels to the class mean. In all experiments reported on in this
paper, k was set to [1/n |, which we deemed to be a reasonable first
guess. Future work will focus on establishing an optimal k, either
theoretically or experimentally.

Extra research is also necessary to determine the main cause of
the strong beneficial effect of the data sharpening. A combination of
two factors seems most likely: First, badly labeled data in the tails
are removed in the classical “outlier removal” sense. Secondly, there
may be an inherent overrepresentation of the tails in the DTW setup.

Another noteworthy result is that most of the effect of the local
distance scaling is lost when using data sharpening. Based on the
results from the classification experiments, it seems plausible that
the locally scaled distance measures only have an advantage over the
Euclidean distance in the case of relatively large distances. The fact
that data sharpening compacts the distribution —hence making the
average distances within the class smaller— is consistent with this
view in explaining the diminished effect of local scaling after data
sharpening.

An interesting statistic in this context is the fact that in the phone
string recognition experiment, the templates in the chosen phone
string hypothesis are on average only about the 100*" nearest neigh-
bour template for the chunk of input data they explain. This is be-
cause of the influence of template concatenation costs and the phone
transition model. Adding further constraints to the task (e.g. lexi-
cal constraints in CSR) causes the inclusion of even worse-matching
templates in the hypotheses, necessitating better “long-range” dis-
tance measures. Therefore, in CSR there might be a clearer advan-
tage of the local Mahalanobis distances over the Euclidean, even
after data sharpening.

5. CONCLUSIONS

We introduced two extensions to the scaled local distance measure
in example based speech recognition based on equivalents in non-
parametric density estimation. We tested the influence of the exten-
sions in three low-level acoustic tasks. Adaptive kernels, a widely
used technique in density estimation, caused only a small improve-
ment. On the other hand, a data sharpening approach loosely based
on the popular mean shift algorithm produced a large improvement.
For phone string recognition, the DTW system using the best avail-
able local distance measure performed better than a state-of-the-art
HMM system.
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