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ABSTRACT 

 
Visual speech cues are known to improve the performance 
of automatic speech recognition (ASR). However, many 
researchers have used speaker’s frontal pose mainly. We 
therefore introduce a new database for large vocabulary 
audio visual automatic speech recognition (AV-ASR), which 
contains not only frontal face images but also face images 
taken from different angles (multi-view face images). 
Another contribution of this paper is to present a new 
algorithm which can model audio and visual characteristics 
between phones. Finally we conducted large vocabulary 
continuous speech recognition experiments on the new 
database using the new algorithm. Experimental results show 
that the proposed AV-ASR system achieved high accuracy 
even if there are mismatches of the views between training 
and test data.  
 

Index Terms— Audio visual automatic speech 
recognition, visual information, product HMM, multi-view. 
 

1. INTRODUCTION 
 
It is well known that humans use acoustic and visual 
information for speech recognition, and many researchers 
have shown that also automatic speech recognition systems 
benefit from using additional visual features, especially 
under noisy environments  [1]-[7].  

Most of the studies, however, have paid attention to 
using visual features extracted from frontal faces of the user. 
Less work has been conducted on using non-frontal faces. 
Yoshinaga et al., for example, conducted speech recognition 
experiments using profile face images [3]. However, the 
addressed task was limited to only four connected Japanese 
digits.  

In our work we address the problem of audio-visual 
speech recognition from non-frontal faces on a large 
vocabulary task. In order to study the effect of different face  
views on AV-ASR, we constructed a new database which 
contains three view face images.   

This paper also describes a new training method for 
AV-ASR, which aims at representing the relationship  
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Fig. 1.  Overview of our AV-ASR system 

 
between audio and visual features faithfully. The new 
algorithm is based on product HMM approach [5]-[7]. We 
evaluated the new algorithm on the new database.  

The remainder of this paper is organized as follows: 
Section 2 describes the outline of the AV-ASR system. 
Section 3 presents the detail of our mouth localization 
system. Section 4 presents the new training algorithm. 
Section 5 describes the database used in this work. Results 
are presented and discussed in Section 6. 
 

2. BLOCK DIAGRAM OF AV-ASR SYSTEM 
 
As shown in Fig. 1, an audio feature is extracted from audio 
data and a visual feature is extracted from video data. In the 
audio feature extraction step, 13 mel-frequency cepstral 
coefficients (MFCC) are calculated and cepstral mean 
normalization (CMN) is performed. After that, the feature 
vectors of 11 consecutive frames are concatenated into one 
143 (=11x13) dimensional vector and then the dimension of 
the vector are reduced to 42 by linear discrimination analysis 
(LDA). 

In the visual feature extraction step, a face is detected 
and a mouth region is localized by the mouth localization 
system, which we describe in the next section. After that, the 
mouth image is transformed by 2-dimensional discrete 
cosine transformation (DCT) and the 100 DCT coefficients 
with the high energy are extracted. Then, 100 coefficients 
are reduced to 30 by LDA. Here, the visual feature vector is  
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 Fig. 2.  Mouth region localization system 
 
interpolated because video frame rate is less than audio one. 
After the interpolation, 15 consecutive frame vectors are 
concatenated and the dimension of the concatenated vector 
are reduced to 42 by LDA again in order to train the 
dynamics of the visual feature. And the mean is subtracted in 
the same manner as CMN in the audio feature extraction. 
Note that we reduce the dimension of a visual feature vector 
hierarchically.  

 
3. MOUTH LOCALIZATION SYSTEM 

 
Fig. 2 describes our mouth region localization system. The 
system has two stages (modules) in order to decrease 
computation time. In the first stage, a face region is localized 
by a Viola-Jones face detector [8], and the search area for 
the mouth region is limited to half of the detected lower 
face. Then, a feature vector is calculated by principle 
component analysis (PCA) for a rectangle region (analysis 
window). While translating and scaling the analysis window 
over the search area, the system searches the region which 
provides the maximum likelihood, given a Gaussian mixture 
model (GMM) which has been trained with mouth images in 
advance [9]. The found region is considered a mouth image. 
After the mouth regions are localized for 12 frames, the 
trajectory of mouth positions is smoothed with a median 
filter. Then, the mouth detector is switched to the second 
stage. The second module is based on a template matching 
approach. Templates are constructed from the mouth images 
localized in the first stage. In the second stage, the 
correlation between input and template images is calculated. 
If a correlation value is more than 0.9, the input image is 
added to a set of templates and the template with the worst 
score is removed. The trajectory is smoothed in the same 
way as the first module.  
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Fig. 4.  The proposed topology of a product HMM 

 
4. AUIDO-VISUAL MODELING 

 
It has turned out in many publications that a product HMM 
can represent asynchronous characteristics between audio 
and visual events very well in AV-ASR [1][2][5]-[7]. We 
also showed that recognition accuracy was improved by re- 
training the product HMM with the audio visual features [5]. 
Fig. 3 depicts the block diagram of a training algorithm for 
the product HMM.  First, audio and visual features are 
extracted from the input signals, respectively. Second, each 
feature model is built individually by the expectation-
maximization (EM) algorithm [10]. Then the product HMM 
is combined from the audio and visual HMMs  

Since a conventional product HMM forced a strict 
synchronization on every phoneme boundary, Nakamura et 
al proposed a new product HMM which could allow an 
asynchronous transition beyond the phoneme boundary [7]. 
However, their method increases the computational 
complexity and requires complicated implementation in the 
case that it was applied to the context-dependent model. 
Note that they used a mono-phone only in their recognition 
experiments. In order to overcome those problems, we 
propose a new product HMM which approximates their 
method. As shown in Fig. 4, only multiple transition paths 
are put on the phone boundaries. In [7], a product of states 
which belong to different phones was used as an output 
probability. Thus, the total number of such states is equal to 
the square of the number of tri-phones. On the other hand, 
since our method doesn’t employ them, a low computation 
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load can be achieved. The proposed topology can also 
loosen the restriction between the phones.  After the product 
HMM is combined, it is re-trained with audio visual 
features. During the re-training, the sequence of the feature 
is associated with the hidden state based on maximum 
likelihood criteria and the parameters of the states are 
updated. Rather than explicitly modeling an asynchronous 
state beyond a phone boundary, we approximate it by the 
states of the boundary. 
 

5. THE DATABASE 
 
This section describes the specification of the new database 
we recorded. Fig. 5 describes the layout of equipments at the 
recording. Three pan-tilt-zoom (PTZ) cameras are set at 
different angles for a subject. A microphone array is 
positioned in front of a speaker and cross talking 
microphone is put on speaker’s ear. Three kinds of video 
data and two kinds of audio data are recorded.  The cameras 
and microphones are connected to different computers. 
Audio and video data streams are synchronized with 
network time protocol (NTP). Fig. 6 shows the sample 
images which are 0 and 45 angle face, respectively. The 
speakers utter English alpha-numeric strings and English 
sentences extracted from TIMIT database. 39 male and 9 
female are recorded. Most of speakers are non native of 
English. The image format follows PAL (interlace) and the 
data are saved in JPEG. 
 

6. EXPERIMENT 
 
6.1. Experimental conditions 
 

Table 2 describes the parameters of AV-ASR system. The 
subjects in test data are not included in training data. We 
evaluated the performance of AV-ASR by using the frontal 
and 45 angle face images. However recognition experiments 
for profile faces are not conducted in this paper. To train the 
mouth localization system, we used the IBM ViaVoiceTM 
Audio-Visual Database [1,2] as well as our new database. 
Our AVASR system is based on JANUS speech recognition 
toolkit developed at UKA [11].  
 
6.2. Results and discussions 
 
We evaluated the performance of AV-ASR with a left-to-
right 3 state HMM, the conventional product HMM [6] and 
the proposed HMM, respectively. Fig 6 shows word error 
rates (WER) for the three approaches on speech recorded 
with a close talking microphone (CTM). Here, the frontal 
face view is used for recognition. As a baseline, the 
performance of audio only ASR is also presented. In Fig 6, 
labels under the x-axis present audio SNR conditions where 
speech is corrupted with white Gaussian noise.  The results  
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Fig. 5. Layout of equipments at the recording 
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show that the proposed model has the best performance in 
almost all conditions although the conventional product 
HMM is slightly better (0.1%) in acoustically clean 
environment. This is because the proposed algorithm can 
approximate asynchronous transition beyond the phoneme 
boundary very well.  

We also analyzed the effect of different facial views on 
WER. Fig. 7 describes WERs when training and test data are 
frontal faces (Test00-Train00), when a 45 degree’s face 
view is tested with the frontal-face models (Test45-Train00) 
and when both test images and the trained visual models 
belong to the 45-degree face views (Test45-Train45), 
respectively. In Fig. 7, the bars above ‘FA’ presents WERs 
of speech recorded with a microphone array. Surprisingly 
even if the view of test data is mismatched to that of training 
data (Test45-Train00), AV-ASR could improve the WER. 
However, the performance of AV-ASR for 45 degree’s face 
is worse than that for a frontal face.  

 
7. CONCLUSIONS 

 
In this work, we presented a novel method for modeling 
state transitions between product HMMs for audio-visual 
automatic speech recognition (AV-ASR). The proposed 
method is an extension of the approach proposed by 
Nakamura[7], and it introduces significant computational 
advantages, while preserving recognition accuracy.  
The proposed method is evaluated on a novel database for 
large vocabulary AV-ASR, which contains not only frontal 
face images but also face images taken from different angles 
(multi-view face images). The experimental results showed  
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Table 2. Configuration of AV-ASR system 
System Parameters Value 

Training data  42 subjects x 3 sets 

Test data 6 subjects x 3 sets 

The number of hidden states 300 (for each stream) 

The number of mixtures 
16 (for audio stream) 
15 (for visual stream)  

The phone model Tri-phone 

Vocabulary size   11133 words  

Language model Trigram (linear interpolation) 
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Fig. 6. Word error rate versus AV-ASR system 
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Fig. 7. Word error rate analysis for face views  

 
that the new method could significantly improve the 
recognition performance. We also analyzed the effect of the 
facial views on the performance of AV-ASR. From the 
results, we can conclude that an ASR system can be 
improved even if there is a mismatch between facial training 
and test images.  
Our work aims at improving AV-ASR performance under 
varying head orientations. In the future we will explore the 
use of visual models trained from different facial views for 
unconstrained AV-ASR.  
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