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ABSTRACT
This paper adopts the framework of DUET, a recently pro-
posed blind source separation (BSS) method, for speech
recognition. Based on the attenuation and delay estimation
in stereo signals spectrographic masks are designed to extract
a target speaker from a mixture containing multiple speech
sources. Instead of using these masks for resynthesis we avoid
source reconstruction and propose to combine the source sep-
aration with a missing data speech recognizer. The obtained
results for connected digit experiments in a multi-speaker en-
vironment demonstrate the validity of the approach.
Index Terms— speech recognition, masks, missing data,

attenuation and delay estimation

1. INTRODUCTION

To effectively apply automatic speech recognition (ASR) sys-
tems in real world scenarios it is necessary to handle hostile
environments with multiple speech and noise sources. Beam-
forming and blind source separation (BSS) techniques have
been applied with some success for distant speech recogni-
tion [1, 2]. These methods aim to lter out the desired tar-
get speech signal while suppressing noise and other interfer-
ences prior to recognition. Subsequent ASR systems then
take the enhanced speech signal as input and perform speech
recognition usually based on mel-frequency cepstral coef -
cients (MFCCs). While beamforming requires a large num-
ber of sensor elements to achieve a good separation, most BSS
methods fail when the number of sources exceeds the number
of microphones.
Recently, there has been an increased interest in underde-

termined BSS methods that can deal with more sources then
sensors [3, 4, 5]. In [3] the DUET algorithm was proposed
to solve the underdetermined problem for the anechoic case.
It was shown that under the so-called W-disjoint orthogonal-
ity (W-DO) assumption it is very unlikely that spectra of two
or more speakers overlap. Similar observations for the single
channel case have been made in the speech recognition com-
munity leading to the missing data automatic speech recogni-
tion (MD-ASR) paradigm [6]. To the best of our knowledge,
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DUET has been used solely in the context of BSS rather than
for ASR. As the demixing relies on the estimation of a time-
frequency mask we propose to adopt the DUET framework
for MD-ASR.
The reminder of this paper is as follows. Section 2 illus-

trates how spectrographic masks suitable for MD-ASR can
be estimated using Short-Time-FOURIER-Transform (STFT)
ratios. Section 3 describes the missing data recognizer, fol-
lowed by connected digit experiments reported in Section 4.
A discussion of the results and relations to other approaches
concludes the paper in Section 5.

2. SPECTROGRAPHIC MASK ESTIMATION

The considered scenario uses two microphone signals x1(t)
and x2(t) to capture N ≥ 2 speech sources s1(t), . . . , sN (t)
assuming the following anechoic mixing model

xm(t) =
N∑

j=1

amjsj(t − δmj), m = 1, 2 (1)

where amj and δmj are the attenuation and delay parameters
of source sj at microphone xm. Because of the anechoic en-
vironment the attenuation and delay parameters of the rst
mixture can be merged with the source de nitions and there-
fore only relative attenuation and delay parameters aj and δj

between both microphones are considered in the following.
Taking the discrete STFT of (1) the mixing model equation in
the time-frequency domain can be approximated as

[
X1(k, l)
X2(k, l)

]
≈

[
1 · · · 1

a1e
−ilω0δ1 · · · aNe−ilω0δN

]⎡
⎣

S1(k, l)
...

SN (k, l)

⎤
⎦, (2)

where Xm(k, l) and Sj(k, l) are the STFT transforms using
a time-frequency grid de ned by (kτ0, lω0) [3]. We used a
25ms HAMMING-window for the STFT with a frame shift of
10ms to match the number of frames generated in the ASR
feature extraction. Under the W-DO assumption exactly one
source Sj will be active at any time-frequency point (k, l) and
it becomes obvious that a set of instantaneous attenuation and
delay parameter estimators

ã(k, l) :=
∣∣∣∣X2(k, l)
X1(k, l)

∣∣∣∣ , δ̃(k, l) :=− 1
lω0

arg
(

X2(k, l)
X1(k, l)

)
(3)
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Fig. 1. Example of binary spectrographic masks for extracting a target source (black areas) from a mixture of two speakers.
Left: FFT-frequency resolution mask M produced by the STFT ratio estimators; Middle: mel-frequency resolution mask M
produced by triangular mel-weighting; Right: corresponding oracle mel-frequency maskO

can be obtained by applying the magnitude and phase opera-
tor onto the complex STFT ratio of the two microphone sig-
nals. It has been shown in [3] that the number of sources
and their corresponding mixing parameters and can be iden-
ti ed based on the number and location of the peaks in a 2-D
power weighted (ã, δ̃) histogram. Once the mixing parame-
ter estimates (âj , δ̂j) are obtained they can be used to label
all (ã, δ̃) pairs resulting in N disjoint time-frequency masks.
For a more detailed review of the original DUET method the
reader is referred to [3]. Based on an EUCLIDean distance
measure

Dj(k, l) :=
√(

ã(k, l) − âj

)2 +
(
δ̃(k, l) − δ̂j

)2 (4)

we construct for each source sj a binary spectrographic mask

Mj := 1{
(k,l):j=argmin

z
Dz(k,l)

} (5)

where 1 denotes the indicator function assigning a 1 to
all time-frequency points (k, l) with a minimum distance
Dj(k, l) and a 0 otherwise. Instead of using these masks
for resynthesis as done in [3] we propose to avoid source re-
construction and directly exploitMj throughMD-ASR. How-
ever, for speech recognition purposes a perceptual frequency
scale rather than the linear STFT frequency axis is preferred.
Using a threshold θ ∈ [0, 1] the STFT resolution mask can be
converted to a binary mel-spectrographic mask

Mj := 1{
(k,b):

∑
l λb(l)Mj(k,l)∑

l λb(l) ≥θ
} (6)

by applying for each subband b a triangular mel-weighting
function

λb(l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 lω0 < ωc(b−1) ,
lω0−ωc(b−1)

ωcb
−ωc(b−1)

ωc(b−1) ≤ lω0 ≤ ωcb
,

ωc(b+1)−lω0

ωc(b+1)−ωcb
ωcb

≤ lω0 ≤ ωc(b+1) ,

0 lω0 > ωc(b+1) ,

(7)

where ωcb
speci es the center frequency

ωcb
= 2π · 700

(
10fcb

/2595 − 1
)

(8)

corresponding to the perceptual mel-frequency scale with

fcb
= fl + b · fh − fl

B + 1
, b = 1, . . . , B (9)

where B is the number of mel-frequency channels and fl, fh
are the lower and higher cut-offs of the mel-frequency axis.
In this paper a threshold θ=0.7 was used for all experiments.
Similarly, the mel-frequency spectrum Sj of a source sj can
be computed via Sj(k, b) =

∑
l λb(l)|Sj(k, l)| [7]. As we

are interested in performing recognition experiments only for
the target speaker si we select the mask that is closest to the
oracle binary mel-frequency mask of this speaker which is
de ned by

Oi := 1{
(k,b):20 log10

(
Si(k,b)∑

j �=i Sj(k,b)

)
≥0

}. (10)

The oracle mask determines all time-frequency points where
the power of the target speaker exceeds or equals the power of
the interferences. Please note that Oi can only be computed
if the source signals are known prior to the mixing process.
Figure 1 shows an example for the mask resolution conversion
and the corresponding oracle mask designed using a priori
knowledge of the sources.

3. MISSING DATA SPEECH RECOGNITION

In this paper an Hidden MARKOV Model (HMM) based miss-
ing data speech recognizer [6] is used as it can directly ex-
ploit the spectrographic masks discussed above. While the
HMMs are trained on clean speech in exactly the same man-
ner as in conventional ASR the decoding is treated differently
in MD-ASR. Additionally to the feature vector sequence o a
time-frequency mask is required. The mask declares each fea-
ture component as reliable or or unreliable ou using a hard or
soft decision [8]. As this study employed mel- lterbank en-
ergy features we used the bounded marginalization technique
[6] to compute the observation probability density function
(PDF) in HMM state q as

φq(o)=
P∑

p=1

cqpNq(or; μp,Σp)

ouhigh∫
oulow

Nq(õu; μp,Σp) dõu, (11)
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where P denotes the number of mixture components, cqp is
the corresponding mixture weight and N (·; μ,Σ) is a mul-
tivariate GAUSSean with mean vector μ and covariance ma-
trix Σ. Conventional ASR systems often append so-called
delta coef cients to static feature vectors [7]. In MD-ASR
an additional decision about the reliability of these appended
components is required. Here we follow [8] and declare delta
components as unreliable if one of the static features involved
in their calculation was declared as unreliable via

ΔM(k, b) =
Θ∏

κ=−Θ

M(k + κ, b), (12)

where Θ denotes the size of the temporal integration win-
dow used for the delta component calculation. While for
the static energy features the integral in (11) can be evalu-
ated over [oulow(b),ouhigh(b)] = [0,ou(b)], no bounds on dy-
namic feature components were utilized here, thus we set
[oulow(b),ouhigh(b)] = [−∞,∞] for all delta feature compo-
nents.

4. EVALUATION

The proposed system was evaluated via connected digit ex-
periments on the TI-DIGIT database sampled at 20 kHz. The
training set consisted of 4235 utterances spoken by 55 male
speakers. The Hidden MARKOV Model Toolkit (HTK) [7]
was used to train 11 word HMMs (’1’-’9’,’oh’,’zero’) each
with 8 emitting states and 2 silence models (’sil’,’sp’) with 3
and 1 state. All HMMs followed standard left-to-right models
without skips using continuous GAUSSean PDFs with diag-
onal covariance matrices and 10 mixture components. Two
different sets of acoustic models were created. Both used
25ms HAMMING-windows with 10ms frame shifts for the
STFT analysis. The rst set of HMMs was used as the sin-
gle channel baseline system employing 13 MFCCs derived
from a 32-channel HTK mel- lterbank plus delta and accel-
eration coef cients (Θ = 2) and cepstral mean normalization
(CMN). The second model set was used for the missing data
speech recognizer and used spectral rather than cepstral fea-
tures. In particular, acoustic features were extracted from a
64-channel HTK mel- lterbank and their rst order delta co-
ef cients (Θ = 2) were appended to the static feature vector.
The test set consisted of 166 utterances of 7 male speak-

ers containing at least 4 connected digits mixed with sev-
eral masking utterances taken from the TIMIT database each
with a signal-to-interferer ratio (SIR) of 0 dB. Stereo mixtures
were created by using an anechoic room impulse response of
a simulated room of size 4m x 6m x 4m (length x width x
height). The two microphones were positioned in the cen-
ter of the room, 1m above the ground, with an inter-element
distance of dmic = 1.72 cm to guarantee accurate phase pa-
rameter estimates [3].

4.1. Experiment 1: single masking source

In this experiment a single speech masking source was used
to corrupt the target speech signal. Figure 2a demonstrates the
setup for the two speaker scenario. The speaker of interest re-
mained stationary at the 0◦location while the speech masker
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Fig. 2. Anechoic room con guration for a single masker in
various positions (a) and multiple TIMIT maskers (b).

simulated by a female TIMIT speaker was placed in differ-
ent angles but identical distance dspk = 1 m to the micro-
phone pair. The recognition performance was evaluated for
the missing data system using the oracle mask [O, ΔO], the
estimated mask [M, ΔM] and a conventional recognizer as
baseline. The recognizers used the appropriate acoustic mod-
els described in the previous section. The obtained results are
presented in Figure 3.
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Fig. 3. Recognition accuracy of the target speaker depending
on the location of a single speech masker.

As expected, the oracle mask performed best marking the
upper performance bound for the MD-ASR system while the
single-channel ASR baseline represented the lower bound us-
ing only one microphone and no spatial information. When
the speech masker was placed between 45◦to 180◦angle rel-
ative to the target speaker, the estimated mask almost per-
fectly matched the oracle mask and hence achieved a very
high accuracy. However, once the masker was placed below
the 30◦angle the performance rapidly started to deteriorate
merging with that of the single-channel baseline at 0◦. The
more the sources move together the less spatial information is
available to estimate the oracle mask which nevertheless still
exists even when target and masker are placed at identical po-
sitions.
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4.2. Experiment 2: multiple masking sources

In this experiment up to 6 different speech maskers (3 male, 3
female) were used to test the ability of the mask estimation al-
gorithm. The recognition performance for the target speaker
was recorded for the missing data recognizer and the single
channel baseline using identical models as in the rst exper-
iment. The number of simultaneously active speech sources
was increased by successively adding one masker after an-
other according to the order shown in Figure 2b. The obtained
results are presented in Figure 4.
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Fig. 4. Recognition accuracy of the target speaker depending
on the number of simultaneously active speech maskers.

Similar to the rst experiment the performance bounds
were marked by the oracle mask and the single channel base-
line. The accuracy of the oracle mask only slightly degraded
from 98.2% for the 1 masker case down to 92.4% for the 6
masker scenario. The MD-ASR system using the estimated
mask showed less robustness when the number of simultane-
ous speaker was increased. However, considering the fact that
only two microphones were used the 69% recognition accu-
racy obtained for the 4 masker scenario is very promising.

5. DISCUSSION

The conducted experiments demonstrate that STFT ratio es-
timators can be successfully used to obtain spectrographic
masks suitable for MD-ASR. The results of the oracle mask
show that even for the 7 speaker scenario there exist spec-
trographic masks leading to a high recognition accuracy. The
drop in performance for the estimated masks can be explained
by the fact that once the number of speakers increases the
SIR improvements start to decrease due to misassigned mask
points. Also it gets more dif cult to accurately estimate the
histogram peaks in these scenarios because the sparseness as-
sumption becomes increasingly unrealistic. Nevertheless the
achieved performance is far superior to that of the single chan-
nel baseline system.
However, the proposed method is not free from any draw-

backs. The requirement that the microphone distance has to
be small enough to avoid phase ambiguities limits the in u-
ence of the attenuation parameter. As speech contains its main

information in the frequency range of 100Hz to 4 kHz, the
problem can be relaxed by lowpass ltering which in turn
would allow us to increase the microphone spacing. Probably
the biggest limitation is the assumption of an anechoic mixing
model that prohibits the use in reverberant environments.
Recently, binaural computational auditory scene analysis

(CASA) systems based on interaural time and intensity differ-
ences (ITD)/(IID) have been used in conjunction with MD-
ASR [9, 10]. These models use computationally intensive
cross-correlation methods to derive ITD estimates for each
frequency band. Similar to DUET they use joint ITD-IID
histograms or PDFs to construct time-frequency masks that
are able to suppress unwanted interferences. However, un-
like DUET the histograms/PDFs are constructed via training
data using a priori information about the target source and/or
interferences. For example, the system in [10] requires a re-
training for every new spatial con guration. Although the at-
tenuation and delay parameters can be interpreted as a crude
approximation of the IID and ITD values DUET is a purely
engineering-computational model.
Both, binaural CASA and DUET fundamentally differ

from other multi-channel approaches in the way they make
use of spatial information. Instead of ltering the corrupted
signal to retrieve the sources the time-frequency plane is par-
titioned into disjoint regions each assigned to a particular
source. The proposed system in this paper can be seen as a
low-computational alternative to binaural CASA systems. It
is in particular attractive for ASR scenarios where only lim-
ited resources for multi-channel processing are available (e.g.,
mobile phones).
In our future work we want to test the proposed method

on real data, extend it to handle reverberant environments and
introduce soft decisions into the mask estimation. Also it re-
mains to be seen whether the algorithm stays robust if non-
sparse noise interferers are present in the mixture.
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