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ABSTRACT 

 
Trainable speech/non-speech segmentation and music detection 
algorithms usually consist of a frame based scoring phase 
combined with a smoothing phase. This paper suggests a 
framework in which both phases are explicitly unified in a segment 
based classifier. We suggest a novel segment based generative 
model in which audio segments are modeled as supervectors and 
each class (speech, silence, music) is modeled by a distribution 
over the supervector space. Segmental speech classes can then be 
modeled by generative models such as GMMs or can be classified 
by SVMs. Our suggested framework leads to a significant 
reduction in error rate. 
 

Index Terms— Speech segmentation, voice activity 
detection, music detection, segmental modeling, GMM 
supervectors 
 

1. INTRODUCTION 
 
Speech/non-speech segmentation and music detection have been 
important unsolved problems for decades. Many approaches were 
suggested with considerable success, but the problem is still 
challenging due to the need for robust and extremely accurate 
solutions. This work was originally motivated by the requirement 
of an extremely accurate speech/non-speech segmentation 
algorithm as a preprocessing stage preceding broadcast speech 
transcription. For this application, every 1% of missed speech may 
account to 1% of WER (word error rate). Taking into account that 
WER for state-of-the-art broadcast transcription systems is in the 
order of 10% [1], a suitable solution must have much less than 1% 
speech misdetection. Accurate detection and removal of non-
speech may improve speaker change detection and clustering, 
feature normalization and speaker adaptation, all leading to lower 
WER.  

Speech/non-speech segmentation is also important for speaker 
and language recognition. For these applications it is more 
important to reject most of the non-speech audio while failing to 
detect some speech is tolerable.  

Reviewing relevant prior work reveals that the most popular 
approach for audio segmentation is based on modeling the 
likelihood of a frame given a certain class with a Gaussian Mixture 
Model (GMM) using Mel Frequency Cepstral Coefficients 
(MFCC) features [2-4]. The likelihood is usually smoothed with 
the likelihood of neighboring frames. In [5] LDA was applied to 
the MFCC features and a 5-state automaton was used for 
smoothing. In [6] a 3-state HMM was used instead of a GMM to 
represent each class, and the frame length was adjusted to 60ms 
instead of 20ms. In [7, 8] the MFCC features were replaced by 

high-level features but modeling and classification were still done 
on a frame basis.  

In [9], classification was done using SVMs. The classification 
was done on a segment level. In order to parameterize a segment, 
high-level features and MFCCs were extracted on a frame basis, 
and their mean and standard deviation were used as an input to an 
SVM. 

In [10], an initial segmentation stage was done followed by 
rule based classification. The classification rules were based on 
frame-level features such as energy, zero-crossing-rate, pitch and 
spectral peaks. 

In this paper we introduce a novel framework for modeling and 
classification of audio. In particular, we focus on classification of 
speech, silence and music. Our framework is based on a more 
general concept of intra-class inter-entity variability modeling 
which we have previously successfully applied for speaker 
recognition [11, 12] and for language identification [13]. 

The remainder of this paper is organized as follows. In section 
2 we review the concept of intra-class variability modeling. In 
Section 3, we present our novel framework for audio classification. 
In Section 4, we describe the experimental setup, the baseline 
systems and the empirical results comparing the baseline systems 
to our proposed algorithm. Finally, section 5 concludes. 
 

2. INTRA-CLASS INTER-ENTITY VARIABILITY 
MODELING 

 
Let X be an entity we want to classify such as a speech segment for 
audio classification, an audio file for speaker recognition, a text for 
topic classification, etc. We assume X is represented by a sequence 
(not necessarily ordered) of feature vectors of length n(x): 
X={x1,…,xn(X)}. The training set T is defined as a set of entities 
labeled with their class identity: T={Xi, Ci}. The goal is given a test 
entity Y={y1,…,yn(Y)}, to classify it. 

A common approach for computing the Maximum-Likelihood 
(ML) class for a test entity is assuming that the feature vectors are 
independent given a class identity Cj (equation 1): 
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This approach was taken by the GMM-based algorithm for speaker 
recognition reported in [14], and by the GMM-based algorithms 
for speech/non-speech and audio classification reported in [2-4]. 
The frame-independence approach is also taken by other 
speech/non-speech algorithms [5-8, 10], though it is somewhat 
relaxed by using a state machine in [5], and using larger frames 
and an HMM in [6].  
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The weakness of the approach described above is that it does not 
capture intra-entity dependency. For example, for speech/non-
speech modeling, there is a strong dependency between the frames 
of a segment. The dependency can be accounted to background 
noise, channel, speaker characteristics, and practically all other 
factors which are relativity constant during a segment. In order to 
capture such dependency, we use a modified generative model to 
model the generation of feature vectors, as follows: 
 
Generate entity Y for class Cj: 

1. Generate entity-distribution fY using class prior distribution 
over the entity-distribution space Pr(fY| Cj). 

2. Generate a sequence of frames using distribution fY. 

An entity-distribution is the distribution used to generate the 
frames of a single entity.  Each class is modeled as a prior 
distribution over entity-distributions. In order to derive the 
likelihood of an observed entity Y given class Cj the product of the 
prior entity-distribution likelihood and the posterior entity 
likelihood should be integrated over the entity-distribution space: 
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Let us define fY* as in equation (3): 
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In order to develop simple and tractable training and classification 
algorithms we approximate the integral in equation (2) by noting 
that Pr(y1,…,yn(Y) | fY) as a function of fY is concentrated sharply 
around fY*. Therefore: 
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We therefore can approximate the likelihood of entity Y given 
class Cj by first estimating a parameterization (distribution fY*) for 
entity y and then computing the likelihood of distribution fY* given 
class Cj. The prior probability of Y used in (4) cancels out for 
likelihood ratio (LR) testing. We define the described concept as 
intra-class inter-entity variability modeling. 

In [11, 12] we used this approach in the framework of speaker 
recognition. In this case entity Y is an audio file, fY* is assumed to 
be a GMM, and Pr (fY*| Cj) is modeled by constructing a 
supervector from the concatenated means of GMM fY* and 
assuming its distribution to be multivariate normal with a shared 
covariance matrix across all speakers. Using this approach was 
beneficial for capturing intra-speaker intra-session variability such 
as channel and changing speaker characteristics, which can be 
assumed constant during the recognition entity (audio file) but 
variable for given a class (speaker). 
 

3. INTER-SEGMENT VARIABILITY MODELING 
 

It is clear from [2-10] that the natural classification entity for audio 
classification and segmentation is a sequence of frames (a segment) 
and not a single frame. It is difficult and probably impossible to 
distinguish with high accuracy between speech, silence and music 
given a single frame. However, speech cannot be assumed to be 

stationary during a long segment. Therefore, most of [2-10] choose 
to apply acoustic modeling on the frame level. Our novel approach 
is to apply the method of intra-class inter-entity variability 
modeling described above to audio classification and 
segmentation. We define the classification entities as uniformly 
spaced overlapping audio segments of length L (300ms) and 
parameterize each segment by adapting a universal background 
model GMM (UBM) to the segment’s feature vector. The 
parameterization (GMM) is then modeled and classified by a 
segment based classifier. Using UBM adaptation for segment 
parameterization ensures that the parameterizations of different 
segments are aligned and comparable. The modified generative 
model is therefore the following: 
 
Generate segment Y for class speech/silence/music: 

1. Generate segment-GMM fY for current segment using class 
prior distribution over the GMM space Pr(fY| class). 

2. Generate a sequence of frames using GMM fY (assuming frame 
conditional independence given fY). 

3.1. Proposed algorithm 
 
The outline of the proposed algorithm is as follows: 
 
Training 
1. Train a UBM from the entire training corpus. 
2. For each class: 
   a. Define evenly spaced overlapping segments of length L.  
   b. Estimate a GMM for each segment by adapting the UBM to 

the segment’s frames. 
   c. Construct a supervector from each GMM. 
 
For GMM training: 
3. For each class: 
       Estimate a GMM for the class using the supervectors as 

training data. 
 
For SVM training: 
3. For each pair of classes: 

   Train an SVM to classify between the supervectors of both 
classes. 

 
Speech segmentation 
1. Define evenly spaced overlapping segments of length L. 
2. Estimate a GMM for each segment by adapting the UBM to the 

segment’s frames. 
3. Compute classification scores for each segment using either 

SVMs or GMMs. 
4. Compare scores to pre-tuned thresholds (on a development 

dataset) and classify whole segments. 
5. A frame is classified as music if it is part of any segment that 

was classified as music. 
Otherwise, it is classified as silence if it is part of any segment 
that was classified as silence. 
Otherwise, it is classified as speech. 

 
3.2. Segment parameterization 
 
We extract 24-order MFCCs + derivatives every 10ms with the 
mean normalized over the entire audio file. Segments were defined 
as sequences of 30 frames and are extracted every single frame for 
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the training dataset (to maximize the amount of training data) and 
every 15 frames for the test dataset.  

Three GMM configurations were investigated for UBM 
training. The first configuration named GMM1 is a single Gaussian 
trained on the entire training dataset. The second configuration 
named GMM3 consists of three Gaussians, each of them trained 
separately for a different class – speech, silence and music. The 
third configuration named GMM128 is a 128-order GMM trained 
on the entire dataset. All GMMs have diagonal covariance 
matrices. 

For the GMM1 configuration a supervector is created for a 
segment by adapting the single Gaussian UBM with the feature 
vectors of the segment and concatenating the mean of the Gaussian 
with the diagonal of the covariance matrix of the Gaussian into a 
single supervector. We apply the log function on the covariance 
components of the supervector in order to partly Gaussianize them. 

For the GMM3 configuration a supervector is created similarly 
as for GMM1. The weights of the Gaussians are concatenated to 
the supervector after applying the log function in order to partly 
Gaussianize them. 

Last, for the GMM128 configuration we only concatenate the 
weights after applying the log function (no mean and covariance 
components). 
 
3.3. Segment classification 
 
We have tested two different classifiers for segment classification. 
The first one is a GMM ML classifier and the second one is an 
SVM [15]. We used an SVM classifier with a Radial-Basis-
Functions (RBF) kernel. For the SVM classifier the supervectors 
were pre-processed by dividing each supervector component by the 
corresponding standard deviation of that component in the entire 
training corpus. 
 

4. EXPERIMENTS AND RESULTS 
 
We tested the algorithms described in section (3) on Arabic 
broadcast news speech. The training and development data was 
obtained from the Linguistic Data Consortium. Four shows were 
segmented and labeled internally at IBM and used for training. 130 
shows were annotated automatically using forced alignment and 
used as development data. The test data consists of 12 shows 
collected, segmented and labeled internally at IBM. The test set 
was recorded from five different broadcasting networks. The 
signal-to-noise (SNR) ratio for the test shows varies significantly 
from 40db to 10db.  
 
4.1. Baseline systems 
 
In order to evaluate the potential of our approach, we compared it 
under both the GMM and SVM frameworks. The GMM classifier 
is similar to those described is [2-4]. The SVM classifier uses an 
RBF kernel. Our baseline (GMM and SVM) classifiers use the 
same front-end as described in subsection (3.2). We optimized the 
parameters of the classifiers using the development dataset. Both 
classifiers produce scores on a frame level which are smoothed 
over evenly spaced overlapping audio segments with correspond to 
the segments used by our approach. The decision logic used is 
identical to the one used for the proposed approach.  
 
4.2. Evaluation method 

We report the accuracy of the various algorithms by measuring 
EER (Equal Error Rate), false alarm rate at low rejection rate 
(0.5%) and false rejection at low false alarm rate (1%). The various 
measures were chosen according to the potential applications for 
speech segmentation. For selected experiments we present DET 
curves [16] which we claim are significantly clearer than the usual 
receiver operating characteristic (ROC) curves for presenting 
speech classification results. 

We have run many experiments in order to optimize the 
parameters of the GMM baseline system. We report only the 
results of the best configuration chosen on the development data. 
The SVM baseline was not heavily optimized. We have tested the 
3 proposed segment parameterizations GMM1, GMM3 and 
GMM128 defined in subsection (3.2) using the classification 
systems described in table (1). 
 

System Segment 
parameterization 

Segment 
classifier 

GMM1+GMM GMM1 GMM 
GMM1+SVM GMM1 SVM 
GMM3+GMM GMM3  GMM 
GMM128+GMM GMM128 GMM 

Table 1: Speech classification systems evaluated 
 
The results for the GMM128+GMM were not as good as the other 
systems and are not reported.  This issue is discussed in section 5. 
 
4.3. Speech / silence classification results 
 
We report in table (2) the recognition results for speech/silence 
classification, and present in figure (1) selected DET curves.  
 

System EER FA @ 
FR=0.5% 

FR @ 
FA=1% 

GMM baseline 2.92%  7.9% 29.6%  
SVM baseline 2.51% 6.8% 14.6% 
GMM1+GMM 1.72% 5.1%     2.7% 
GMM1+SVM 1.96%  5.5%    5.4%  
GMM3+GMM  2.21% 4.1% 24.6% 

Table 2: Speech / silence classification results 
 
We can see that both the GMM1+GMM and the GMM3+GMM 
systems reduce the error rate dramatically compared to the baseline 
GMM. For the SVM framework, we see a significant improvement 
for the GMM1+SVM system compared to the baseline SVM. 
 
4.4. Speech / music classification results 
 
Recognition results for speech/music classification are presented in 
table (3), and selected DET curves are presented in figure (1). 
 

System EER FA @ 
FR=0.5% 

FR @ 
FA=1% 

GMM baseline 1.43% 3.4% 3.2% 
SVM baseline 1.82%  9.4% 5.0% 
GMM1+GMM 1.81% 4.6% 4.3% 
GMM1+SVM 1.70% 3.4% 3.7% 
GMM3+GMM 1.27% 2.0% 1.9% 

Table 3: Speech / music classification results 
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We can see that the GMM1+GMM system degrades accuracy 
compared to the baseline, while the GMM3+GMM system reduced 
the error rate significantly. For the SVM framework, we see a 
dramatic improvement for the GMM1+SVM system compared to 
the SVM baseline. 
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Figure 1: Selected DET curves for speech-silence (top) and 
speech-music (bottom) classification. The tabulated error rates are 
designated by ‘x’ for the baseline and ‘o’ for our approach. 
 

5. CONCLUSIONS AND FUTURE WORK 
 
In this paper we introduced a concept named intra-class inter-entity 
variability modeling we have used before for improved speaker 
recognition and described how it can be used successfully for 
speech segmentation and classification. We intend to extend our 
work by exploring better methods to model GMM supervectors. 
This can be done by trying to capture dependencies between GMM 
coefficients and coping with non-Gaussian distributions. We also 
intend to use the intra-class inter-entity variability modeling 
concept for other speech related classification challenges. 
.  
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