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ABSTRACT 

Voice Activity Detection (VAD) systems have been the object 
of continuous research during the last three decades. While 
single microphone systems cannot take advantage of certain 
spatial properties of speech signals, microphone array systems 
consisting of many elements based on beamforming techniques 
can be difficult to implement in reality due to cost and 
complexity issues. The aim of the work described in this paper 
was to achieve both practical feasibility and spatial 
discrimination ability. A new approach is developed for two-
microphone VAD capable of profiting from the concentration of 
speech energy in time, frequency and space. The algorithm is 
implemented and compared with several standard VAD 
algorithms, such as AFE, AMR and G.729B, and other recently 
proposed systems, revealing promising results under real-world 
noise conditions. The main advantage of the proposed approach 
is its capacity to outperform the above methods without the 
need for any spatial or spectral constraints, which makes it both 
versatile and capable of further improvement. 

Index Terms— Speech processing, Acoustic signal detection, 
Robustness, Direction of arrival estimation, Acoustic arrays 

1. INTRODUCTION 
Determining exactly when speech starts and finishes is a very 
complex task when the acoustic environment is filled with non-
stationary noise. Unfortunately, this is the usual case when 
dealing with real-world applications, where there is a need for 
systems that can perform speech endpointing with accuracy and 
reliability. This is the goal of robust Voice Activity Detection 
(VAD), a field that is receiving considerable attention because 
of its relationship to, for example, speech recognition [1] and 
speech enhancement [2]. 

Recently, the use of microphone arrays for VAD purposes 
has been shown to be beneficial, since the spatial features of 
speech sounds can be used for speech/noise discrimination. 
Some authors suggest the use of arrays of an indefinite number 
of elements, based on, for instance, the calculation of the global 
Signal-to-Noise Ratio (SNR) using a microphone array to 
estimate the individual SNR for every frequency [3], or the 
Generalized Likelihood Ratio Test applied to multichannel 
input and far-field wideband sources [4]. Most of the research in 
the field has not addressed the problem of scaling the 
performance with the number of microphones. When the most 
important goal is high performance, we believe that microphone 
array techniques with many elements are the most effective, 
fully justifying the effort required to realize a complex design 

and its implementation. 
However, we also think that simpler methods deserve the 

attention of the research community. The technique proposed in 
this paper takes full advantage of just two sensors, and provides 
a good trade-off between complexity and performance. At the 
same time, we have avoided beamforming approaches, because 
these techniques require either a priori knowledge of the 
incoming Direction of Arrival (DOA) or a certain source 
tracking algorithm [5], usually very sensitive to noise 
perturbations. Despite its simplicity, our system uses both 
spatial and spectral features of the source, unlike the majority of 
existing algorithms, which focus on either the spectral or spatial 
[6] characteristics. 

We have assumed a certain spatial characterization for both 
speech and noise sources. As regards speech, the organs 
involved in its production happen to be very small, especially in 
relation to the distance to and between the microphones. This 
means that a speech source is spatially perceived as an object 
that occupies not more than a few degrees. At the same time, it 
is not usually very far from the microphones and is pointed at 
them, which creates a direct dominant propagation path and, in 
spite of significant room reverberation, a clear DOA estimate 
can be obtained. Regarding noise sources, some are 
significantly bigger in size (vibrating walls, engines, big 
crowds...) and their DOA is highly unlocalized. However, even 
when their size is comparable to that of a speech source, they 
are usually located further away, which results in multipath 
propagation and DOA spread. These are the key differences 
between speech and noise sources that we try to exploit in our 
system. 

In short, the proposed technique is based on a new decision 
measure that represents the degree to which sound energy 
concentrates in space for a certain time-frequency region. This 
measure is referred to as DOA homogeneity, and it is defined 
based on the entropy of the DOA estimations, determined from 
the 2-channel observed signal. If we adopt the above 
assumptions, the proposed measure provides a higher value for 
speech regions than for noise regions, a fact that makes it 
possible to distinguish and classify them. These DOA 
homogeneity values, which are represented as a two-
dimensional map, finally become the input for the statistical 
binary classifier proposed as a VAD system in [8]. 

The tests employ Receiver Operating Characteristic (ROC) 
curves to compare our proposed method with the conventional 
Statistical VAD (SVAD) [8], as well as with other widely 
deployed standards published by ETSI and ITU and recently 
developed algorithms, namely Long-Term Spectral Divergence 
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(LTSD) [9], First-Order Differential Microphone (FODM) [1] 
and Magnitude Squared Coherence (MSC) [2]. We also 
investigate the robustness of our algorithm with respect to 
changes in the noise environment and the Signal-to-Noise Ratio 
(SNR) to enable us to draw more general conclusions about its 
performance. 

2. ALGORITHM DESCRIPTION 

2.1. DOA Estimation and Weight Calculation 
The proposed algorithm, shown in Fig. 1, consists of two stages. 
First, both channels of the signal are divided into frames of 
length L with a certain amount of overlapping. Every frame is 
multiplied by a Hanning window, followed by a DFT operation. 
Given m as the microphone index, the observations tfxm ,  are 
expressed as in (1), resulting in the DFT magnitudes tfm ,  
and phases tfm , , which depend on frequency f and time t. 
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The obtained DFT phases f1  and f2  are used to 
estimate the DOA for each frequency bin [7]. Taking account of 
geometric considerations and a far-field assumption, we express 
the DOA tf ,  as in equation (2), where sv  corresponds to the 
speed of sound and d is the distance between the microphones. 
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At the same time, the DFT magnitudes are used to weigh 
their corresponding DOA estimates. Based on the principle that 
frequencies with high SNR produce more reliable estimates, the 
weights consist of the sum of the powers from both channels, as 
in equation (3). Additionally, certain weights are set at zero 
when, due to additive noise effects, the inverse sine function 
receives a phase difference outside the interval [–1, 1] as an 
argument. 
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2.2. Entropy calculation 
Our goal is to find small time-frequency regions where the 

DOA is homogeneous. These analysis regions are small 
rectangular grids, with a time width N and frequency height M, 
as in expression (4). 
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To calculate the homogeneity of these N  M DOA 
estimates, a histogram is built to approximate the real 
distribution. The continuous DOA space [– /2, + /2] is 
quantized into B bins, while the contribution of each individual 
estimate to the histogram varies depending on its corresponding 
power-based weight, as shown in Fig. 2. The entropy of this 
distribution is calculated as in expression (5). Here, tfpb ,  is 
the probability of DOA bin b, calculated for a grid centered at 
frequency f and time t. The term tf ,  corresponds to the 
quantized DOA estimations and b are the quantization bins. 
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We decided to use this entropy feature because, when we 
already have a low score due to speech presence and certain 
interference appears, the outcome remains almost unaffected. 
Other features, such as the standard deviation, do not have this 
advantage. Finally, DOA homogeneity tf ,  is determined by 
inverting and normalizing the entropy, as shown in equation (6). 
The maximum entropy value HMAX depends on the number of 
bins B into which the DOA is quantized and is calculated as the 
entropy of a completely flat distribution. Substituting equal 
probability values into equation (5), we obtain BHMAX 2log . 
The result tf ,  is a normalized time-frequency map of the 
inverted DOA entropy values, which range from 0 (noise, 
complete randomness), to 1 (speech, total organization). 

Figure 2. Examples of noise (top) and speech (bottom) 
regions, showing the DOA estimates (left, top), power-based 
weights W (left, bottom) and resulting histogram (right) for 
each case. 
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Figure 1. Schematic of the proposed algorithm. 
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MAXHtfHtf ,1,  (6) 
tf ,  follows a normal distribution whose variance 

becomes larger in the presence of speech. As in [8], we apply 
thresholding to the log-likelihood ratio of speech to non-speech 
probabilities, assuming normal distributions. Let us explore the 
features of these entropy maps from two different points of 
view: 
1) Time-Frequency domain: Other methods make direct use of 
the concentration of speech power around harmonics, but our 
system uses this information indirectly, modifying the DOA 
estimation and making it more reliable. In addition, SVAD 
introduces discrimination ability for the frequency patterns that 
appear in the entropy maps. Grid processing also introduces a 
certain smoothing, which reduces the effect of the noise and 
limits the time resolution. 
2) Spatial domain: The main advantage of our method relates to 
this domain. Considering the assumptions we have made, our 
algorithm is capable of distinguishing physically small sources 
that are relatively close to the microphones, and which therefore 
have a clear propagation path (speech) from other more 
unlocalized sources that lie further away or are physically 
bigger (noise). The robustness of our algorithm in the presence 
of non-stationary noise compensates for its weakness with 
certain kinds of interference, validating the assumptions we 
made. 

3. EVALUATION 

3.1. Experimental setup 
To test the system, a total of 14 men and women spoke a 
sentence in Japanese, which was recorded using two omni-
directional microphones, placed in a line perpendicular to the 
incoming sound and 4 cm apart. We maintained the distance to 
the microphones at one order of magnitude greater, to allow us 
to assume the far-field hypothesis. The incoming DOA  was 
always measured as the angle of deviation from a line 
orthogonal to the microphones. 

The background noise was recorded in Tokyo, Japan using 
a similar configuration, surrounded by different non-stationary 
real environments: airport, train platform, train ticket gate, 
restaurant, subway platform, subway ticket gate and street. 

3.2. Description of tests 
The sampling frequency was decided experimentally and set at 8 
kHz, the frame length L was 32 ms with a 50% overlap, the DFT 
operations were computed using 256 points, the width and 
height of the entropy grids, N and M, were 9 and 5, respectively, 
and the number of DOA quantization bins B was set at 32. 

For every combination of the 7 noise environments and 14 
speech utterances, 4 different SNR values were considered: –5, 
0, 5 and 10 dB. In addition, 2 different noise realizations were 
used for every combination in order to obtain a more reliable 
average. This meant that 784 different noisy speech utterances 
were tested. The SNR was defined as the ratio between speech 
and noise energy, calculated from the first to the last speech 
sample in the utterance. Every test output a continuous feature, 
to which we applied simple binary thresholding. The accuracy 
of the resulting VAD decision was obtained by comparing it 
with the manual labels, and expressed as the relationship 
between the false acceptance rate, namely the percentage of 
incorrectly detected speech frames, which are actually noise, 

and the false rejection rate, namely the percentage of incorrectly 
detected noise frames, which are actually speech. 

For each environment and SNR, the obtained data were 
plotted as ROC curves. The rest of the compared algorithms, 
LTSD, FODM, MSC and SVAD, received the same treatment. 
We chose these methods for different reasons; SVAD is directly 
related to our system, FODM and MSC focus specifically on 
two-microphone systems, and LTSD is a fairly simple single 
channel algorithm with good performance. The standards ETSI 
Advanced Front-End (AFE) [10], ETSI Adaptive Multi-Rate 
(AMR1 and AMR2) [11] and ITU-T G.729B [12], were plotted 
as single points in the ROC space due to their optimal threshold 
specification. To make a fairer comparison, single-channel 
methods were provided with a beamformed signal, using a 
delay-and-sum beamformer aimed at 0 degrees (similar spatial 
constraint as FODM), whose approximate SNR gain is 3 dB. 
We also carried out tests using only one of the channels, 
although the results were never better. 

3.3. Results 
To provide an illustrative example, we show detailed results for 
0 dB SNR and noise recorded at an airport. However, more 
general results in terms of both SNR and noise environment are 
given in numerical form. As seen in Fig. 3, the best performing 
ROC curve belongs to our DOA-Entropy algorithm. In terms of 
SNR gain, the second best system (FODM) performs at an 
estimated 4-5 dB below ours. Moreover, it is interesting to 
notice the great improvement achieved simply by changing the 
original SVAD input to our DOA-Entropy map. 

With respect to changes in SNR, Equal Error Rates (EER) 
and working points are shown in Tables 1 and 2, respectively. 
EER consist of the points in the ROC space where the false 
acceptance and false rejection rates are equal. Qualitatively, the 
order of the best performing algorithms was basically the same 
in all the cases, namely DOA-Entropy in first position and 
FODM second, while the other algorithms performed worse on 
average (see Table 1). More specifically, at –5 dB SNR FODM 
performed slightly better, while at 0 dB FODM and DOA-
Entropy performed equally well, and at 5 and 10 dB our method 
was superior with an improvement margin of over 10%. This is 
mainly because the assumption made for the weighting 

Figure 3. ROC results at 0 dB SNR: our method (DOAENT), 
Sohn's Statistical VAD, FODM, LTSD and MSC algorithms, 
and the standards AFE, AMR1/2 and G.729B. Airport noise 
environment.
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procedure holds better with a positive SNR. When there is too 
much noise, high power at a certain frequency is less likely to 
be caused by speech, so that noisy DOA estimations contribute 
significantly to the histogram estimation, making it ‘whiter’. 

The working points (false rejection and false acceptance 
rates) of the different standards, shown in Table 2, were always 
above the ROC curve of our algorithm, which indicates inferior 
performance. These results are approximately in accordance 
with those reported in [9] for the AURORA-2 database [13]. 

To illustrate the advantage of the absence of spatial 
constraints for our algorithm, in Fig. 4. we show the impact of 
modifying the speech’s incoming DOA. We took the only noise 
environment (‘restaurant’) where FODM clearly outperforms 
our method and set the SNR at 0 dB. As we can see, using a 
DOA of just 32º produces a radical change, since the ROC 
curve for FODM becomes useless. However, the DOA-Entropy 
performance does not remain unaffected because of the 
variation in the resolution at different angles and the higher 
impact of noise. Nevertheless, this performance degradation is 
much less harmful than with FODM. Therefore, our algorithm is 
very useful with moving speakers, where there are no spatial 
constraints. 

4. CONCLUSION 
The proposed algorithm outperforms other recent systems and 
standards, intended for both dual and single microphone 
operation, without the need for certain constraints and in 
adverse noise environments with many highly localized 
interferences. 

Additional processing in the spectral, spatial or time 
domains should produce further improvements. One especially 
interesting problem is how to suppress other undesired 
interfering sources whose DOA estimations are homogenous, 
resembling those for the target speech. When the DOA is 
significantly different, it is possible to use either a more 
sophisticated weighting procedure or to manipulate the DOA 
estimations directly. 

Although this is inherently a two-microphone technique, it 
is possible to integrate information from other microphones by 
creating different pairs with independent estimations, provided 

we have a good geometrical design. In this way, we would be 
able to compensate for low precision at side angles, and to 
detect more than one spatial dimension for speech source 
localization. 
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Figure 4. ROC curves using DOA-Entropy and FODM 
methods for different angles: 0 and 32 degrees. Restaurant 
noise environment.
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Table 1. Equal Error Rates, averaged for seven different 
noise environments. The rows show the tested SNR values; 
the columns show the different VAD algorithms. 

DOA FODM SOHN LTSD MSC
Mean 10 dB 8.1% 9.3% 16.7% 9.6% 12.6%
Relative 10 dB Ref. 14.8% 106.0% 18.5% 55.5%
Mean 5 dB 12.1% 13.6% 20.9% 15.7% 17.8%
Relative 5 dB Ref. 12.4% 72.7% 29.7% 47.1%
Mean 0 dB 19.5% 19.6% 25.6% 25.9% 24.8%
Relative 0 dB Ref. 0.5% 31.3% 32.8% 27.2%
Mean -5 dB 28.9% 27.2% 33.4% 35.4% 33.7%
Relative -5 dB Ref. -5.8% 15.6% 22.5% 16.6%

Table 2. Standards’ working points, averaged for the 
different noise environments. The first percentage 
corresponds to the false rejection rate and the second to the 
false acceptance rate. 

AFE G.729B AMR2
Mean 10 dB 4.2%, 45.1% 16.3%, 53.1% 0.3%, 71.0%
Mean 5 dB 12.0%, 41.3% 22.1%, 53.9% 0.5%, 70.4%
Mean 0 dB 22.1%, 43.6% 36.3%, 54.1% 3.6%, 66.4%
Mean -5 dB 33.1%, 42.3% 57.9%, 53.0% 23.0%, 56.3%
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