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ABSTRACT

We present a stochastic mapping technique for robust speech recog-
nition that uses stereo data. The idea is based on building a GMM
for the joint distribution of the clean and noisy channels during
training and using an iterative compensation algorithm during test-
ing. The proposed mapping was also interpreted as a mixture of
linear transforms that are estimated in a special way using stereo
data. The proposed method results in 28% relative improvement
in string error rate (SER) for digit recognition in the car, and in
about 10% relative improvement in word error rate (WER), when
applied in conjunction with multi-style training (MST), for large
vocabulary English speech recognition.
Index Terms: Noise robustness, speech recognition, non-linear
mapping, stereo-data.

1. INTRODUCTION

Building speech recognition systems that are robust to environ-
mental changes is important, especially when these systems are to
be deployed in the eld. In this paper we introduce a stochatic
mapping algorithm that is built using stereo data, i.e. data that
consists of simulataneous recordings of both the clean and noisy
speech. We will refer to this mapping as stereo-based stochas-
tic mapping (SSM). While it is generally dif cult to obtain stereo
data, it can be relatively easy to collect for certain scenarios, e.g.
speech recognition in the car. In some other applications of speech
recognition, e.g. our recent work on a speech-to-speech transla-
tion system [2], all we have available is a set of noise samples of
mismatch situations that will be possibly encountered in eld de-
ployment of the system. In these cases stereo-data can also be eas-
ily generated by adding the example noise sources to the existing
“clean” training data.

The basic idea of the algorithm is to stack both the clean and
noisy channels to form a large augmented space and to build a
statistical model in this new space. We use a Gaussian mixture
model (GMM) in this work. During testing, both the observed
noisy speech and the augmented statistical model are used to pre-
dict the clean speech. This can be viewed as some form of non-
linear mapping between the noisy and clean feature spaces that is
learned by the GMM. We point out the relationship between the
proposed mapping method and the SPLICE algorithm which uses
stereo data [1]. In addition, we show that the mapping effectively
results in a mixture of linear feature space transforms commonly
known as FMLLR [5]. This is similar in spirit to some recently
proposed mixture of linear transforms as in [3, 6]. All these lin-
ear transform mixtures, including the proposed method, differ in
their details. The resulting mapping can be used on its own, as a
front-end to a clean speech model, and also in conjunction with

multistyle training (MST). Both scenarios will be discussed in the
paper.

The paper is organized as follows. We formulate the com-
pensation algorithm in Section 2. Experimental results are given
in Section 3. We rst test several variants of the algorithm and
compare it to SPLICE for digit recognition in the car environment.
Then we give results when the algorithm is applied in conjunc-
tion with multistyle training (MST) for large vocabulary English
speech recognition. In both cases the proposed technique shows
signi cant gain over the baseline. Finally we summarize our nd-
ings in Section 4.

2. ALGORITHM FORMULATION

Assume we have a set of stereo data {(xi, yi)}, where x is the
clean (matched) feature representation of speech, and y is the cor-
responding noisy (mismatched) feature representation. Let N be
the number of these feature vectors, i.e 1 ≤ i ≤ N . The data itself
is an M-dimensional vector which corresponds to any reasonable
parametrization of the speech, e.g. cepstrum coef cients. In a di-
rect extension the y can be viewed as a concatenation of several
noisy speech vectors that are used to predict the clean speech. De-
ne z ≡ (x, y) as the concatenation of the two channels. The rst

step in constructing the mapping is training the joint probability
model for p(z). We use Gaussian mixtures for this purpose, and
hence write

p(z) =
K�

k=1

ckN (z;μz,k,Σzz,k) (1)

where K is the number of mixture components, ck, μz,k, and
Σzz,k, are the mixture weights, means, and covariances of each
component, respectively. In the most general case where Ln noisy
vectors are used to predict Lc clean vectors, and the original pa-
rameter space is M-dimensional, z will be of size M(Lc + Ln),
and accordingly the mean μz will be of dimension M(Lc + Ln)
and the covariance Σzz will be of sizeM(Lc+Ln)×M(Lc+Ln).
Also both the mean and covariance can be partitioned as

μz,k =

�
μx,k

μy,k

�
(2)

Σzz,k =

�
Σxx,k Σxy,k

Σyx,k Σyy,k

�
(3)

where subscripts x and y indicate the clean and noisy speech re-
spectively.

The mixture model in Equation (1) can be estimated in a clas-
sical way using the expectation-maximization (EM) algorithm. Once
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this model is constructed it can be used during testing to estimate
the clean speech given the noisy observations. This can be formu-
lated as:

x̂ = argmax
x

p(x|y) (4)

Now the estimation in Equation (4) can be further decomposed as

x̂ = argmax
x

p(x|y) = argmax
x

�
k

p(x, k|y)

= argmax
x

�
k

p(k|y)p(x|k, y) (5)

The problem of estimating x in Equation (5) looks like a mix-
ture estimation problem. Hence, we will iteratively optimize an
EM objective function given by

x̂ = argmax
x

�
k

p(k|x̄, y) log p(k|y)p(x|k, y)

= argmax
x

�
k

p(k|x̄, y)[log p(k|y) + log p(x|k, y)]

≡ argmax
x

�
k

p(k|x̄, y) log p(x|k, y)

≡ argmax
x

−1

2

�
k

p(k|x̄, y)
�
log |Σx|y,k|+

(x− μx|y,k)
TΣ−1

x|y,k(x− μx|y,k)
�

(6)

where x̄ is the value of x from previous iteration, and x|y is used
to indicate the statistics of the conditional distribution p(x|y). By
differentiating Equation (6) with respect to x, setting the resulting
derivative to zero, and solving for x, we arrive at the clean speech
estimate given by�

k

p(k|x̄, y)Σ−1
x|y,kx̂ =

�
k

p(k|x̄, y)Σ−1
x|y,kμx|y,k (7)

which is basically a solution of a linear system of equations. p(k|x̄, y)
are the usual posterior probabilities that can be calculated using the
original mixture model and Bayes rule, and the conditional statis-
tics are known to be

μx|y,k = μx,k + Σxy,kΣ
−1
yy,k(y − μy,k) (8)

Σx|y,k = Σxx,k − Σxy,kΣ
−1
yy,kΣyx,k (9)

Both can be calculated from the joint distribution p(z) using the
partitioning in Equations (2) and (3). A reasonable initialization is
to set x̄ = y, i.e. initialize the clean speech with the noisy speech.

An interesting special case arises when x is a scalar. This
could correspond to using the ith noisy coef cient to predict the
ith clean coef cient or alternatively using a time window around
the ith noisy coef cient to predict the ith clean coef cient. In this
case, the solution of the linear system in Equation (7) reduces to
the following simple calculation for every vector dimension.

x̂ =

�
k
p(k|x̄, y)μx|y,k/σ

2

x|y,k�
k
p(k|x̄, y)/σ2

x|y,k

(10)

where σ2x|y,k is used instead of Σx|y,k to indicate that it is a scalar.
This simpli cation will be used in the experiments.

SPLICE[1] uses a similar GMM setting but only estimates
component dependent biases for the compensation. From this point
of view, SPLICE assumes perfect correlation between the clean
and noisy channels. Another interesting special case exists that re-
lates the proposed mapping to linear feature space transforms as
FMLLR [5]. The mapping in Equations (7)-(9) can be simpli ed
as

x̂ =
�
k

p(k|x̄, y)(Aky + bk) (11)

where Ak = CDk, bk = Cek, and

C =

��
k

p(k|x̄, y)Σ−1
x|y,k

�−1

(12)

ek = Σ−1
x|y,k

�
μx,k − Σ−1

yy,kΣxy,kμy,k

�
(13)

Dk = Σ−1
x|y,kΣ

−1
yy,kΣxy,k (14)

When the dimensions of x and y equal the original parameter space
dimension the mapping in Equation (11) is a mixture of linear FM-
LLR transforms weighted by component posteriors.

3. EXPERIMENTAL EVALUATION

In the rst part of this section we give results for digit recog-
nition in the car environment and compare the proposed method
to SPLICE. In the second part, we provide results when the pro-
posed technique is applied in conjunction with multi-style training
(MST) for large vocabulary English speech recognition.

3.1. Experiments for digit recognition in the car

The proposed method was tested for digit recognition in the car.
The database called CARVUI has two channels simultaneously
collected using close talking (CT) and hands-free (HF) microphones.
The data was collected in Bell Labs. The evaluation is limited to
the digit part of the database. There are about 7000 utterances for
training and 800 utterances for testing. Twelve (10 digits+oh+sil)
HMMs are built. Each model has six states and 8 Gaussians/state.
The feature space has 39 dimensions consisting of 13 cepstrum
coef cients including C0 and their rst and second derivatives.
Cepstral mean normalization is applied during training and test-
ing. The recognition network is a simple loop grammar over the
models. Training and recognition is done using HTK. A baseline
set of results for this task are given in Table 1.

Condition SER

clean/clean 12.9
clean/noisy 31.7
noisy/noisy 16.8
clean/VTS 28.6

Table 1: Baseline sentence error rate (SER) results (in %) of the
close-talking (CT) microphone data and Hands-Free (HF) data.

The rst three lines refer to train/test conditions where the
clean refers to the CT and noisy to the HF. The fourth line corre-
sponds to using clean training and noisy test data that is compen-
sated using conventional rst order vector Taylor series (VTS) [4].
It can be observed from the table that the perofrmance is clearly
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effected, as expected, by the addition of noise. Using noisy data
for training improves the result considerably but not to the level of
clean speech performance. VTS gives a slight improvement over
the baseline.

The mapping is applied to the MFCC coef cients before CMN.
After applying the compensation, CMN is performed followed by
calculating the delta and delta-delta. Two methods were tested
for constructing the mapping. In the rst, a map is constructed
between the same MFCC coef cient for the clean and noisy chan-
nels. In the second, a time window, including the current frame
and its left and right contexts, around the ith MFCC noisy coef-
cient is used to calculate the ith clean MFCC coef cient. We

tested windows of size three and ve respectively. Thus we have
mappings of dimensions 1× 1, 3 × 1, and 5× 1 for each cepstral
dimension. These mappings are calculated according to Equation
(10). In all cases, the joint Gaussian mixture model p(z) is initial-
ized by building a codebook on the stacked cepstrum vectors, i.e.
by concatenation of the cepstra of the clean and noisy speech. This
is followed by running three iterations of EM training. Similar ini-
tialization and training setup is also used for SPLICE. Only one
iteration of the compensation algorithm is applied during testing.
It was found in initial experiments that more iterations improve
the likelihood, as measured by the mapping GMM, but slightly
increase the WER.

In the rst set of experiments we compare between SPLICE
and SSM without a time window, referred to as SSM-1, for dif-
ferent GMM sizes. These results are shown in Table 2. It can
be observed that the proposed mapping outperforms SPLICE for
all GMM sizes with the difference decreasing with increasing the
GMM size. This makes sense because with increasing the num-
ber of Gaussian components, and accordingly the biases used in
SPLICE, we can theoretically approximate any type of mismatch.
Both methods are considerably better than the VTS result in the
last row of Table 1

16 64 256

SPLICE 27.0 26.2 25.5
SSM-1 24.5 24.5 24.0

Table 2: Sentence error rate results (in %) of Hands-Free (HF) data
using the proposed mapping (SSM-1) and SPLICE for different
GMM sizes.

Finally Table 3 compares the SSM with and without the time
window. We test windows of size 3 and 5. The size of the GMM
used is 256. Using a time window gives an improvement over
the baseline SSM with a slight cost during runtime. These results
are not given for SPLICE because using biases requires that both
the input and output spaces have the same dimensions, while the
proposed mapping can be also viewed as a projection. The best
SSM con guration, namely SSM-3, results in about 28% relative
reduction in SER over the uncompensated baseline.

3.2. Experiments for large vocabulary speech recognition

In this set of experiments the proposed mapping is applied in con-
junction with MST for English large vocabulary speech recogni-
tion. The reason for using the technique with MST, rather than
with the clean speech model, is that MST brings considerable im-
provement in performance in our experiments. Hence, we would

SER
SSM-1 24.0
SSM-3 22.8
SSM-5 23.0

Table 3: Sentence error rate results (in %) of Hands-Free (HF)
data using three different con gurations of the proposed mapping
(SSM) for 256 GMM size.

like to explore the potential of the proposed method to obtain fur-
ther improvements on top of MST. This is in the same spirit of
using speaker-adaptive training (SAT) scheme, where some adap-
tation or compensation method is used in both training and decod-
ing.

The speech recognition system is based on the IBM Via-Voice
product engine. The feature space is formed as follows. First,
24 dimensional mel frequency cepstrum coef cients (MFCC) in-
cluding energy are calculated. The MFCC features are then mean
and energy normalized. 9 vectors are stacked leading to a 216-
dimensional parameter space. The feature space is nally reduced
to 40 dimensions using a combination of linear discriminant analy-
sis (LDA), and maximum likelihood linear transformation (MLLT).
This 40-dimensional space is used for both training and decoding.

The acoustic model uses Gaussian mixture models associated
to the leaves of a decision tree. The tree clustering is done by
asking questions about phoneme context. The phoneme inventory
has 54 phonemes for American English, and each phoneme is rep-
resented by 3 states. After aligning feature vectors to leaves, the
GMMs for the leaves are rst initialized, and then they are re ned
by running four iterations of the FB algorithm. Rank distributions
for each leaf are calculated using the resulting Gaussian mixture
models. These discrete rank distributions are used to calculate
acoustic scores in the decoding stage. The search uses a stack de-
coder which employs the rank distributions and trigram language
models to nd the most likely spoken utterance.

For clean acoustic model, the training data have about 150
hours of speech which leads to about 43K Gaussians. Testing us-
ing the clean model is referred to as the clean results. The multi-
style data are generated by adding noise to the clean data. We tried
several types of noise. In the results below we use “humvee+tank
+babble” noise at different signal-to-noise ratios. Samples of the
“humvee”, “tank” and “babble” noise are added at random to dif-
ferent parts of the utterance. This is in anticipation for the kind
of noise that the system might encounter in eld deployment. For
the multi-style training, the training data have about 330 hours of
speech and this results in about 55K Gaussians in the model. Test-
ing using the MST model is referred to as MST results. The mod-
els are gender dependent, i.e. separate male and female models.
Since in our test set there are far more male speakers than female
speakers, the experimental results reported below were obtained
on male speakers evaluated using male models.

The rst test set uses test data collected in the context of the
Babylon project. It has 5 male speakers with 150 utterances from
each. Therefore, there are 750 utterances in total for each test con-
dition (clean, 15dB and 10dB).

For simplicity, we considered building the mapping between
the same coef cient in the clean and noisy channels, i.e. no time
window is considered as discussed in the previous subsection. Map-
pings are initialized by binary splitting of lower order maps, and
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an initial map of size 256 was initialized by picking some vec-
tors randomly from the training data. The multi-style data are also
used as stereo data in training the mapping. A map is built for each
noise condition and is used to compensate the training data used in
MST training. This is acceptable during training because the con-
dition is known. Training data compensated using the mapping are
pooled and used to build another model the same way as above.

During testing the SNR-speci c map is used. This might not
be a realistic assumption, because the true condition is not sup-
posed to be known during testing. However, we believe that using
an environment classi er will be able to identify the condition with
suf cient accuracy. To assess this point we used a GMM based
environment classi er in the results of Table 5. This scenario is re-
ferred to as the MST+SSM. Different mapping sizes are used and
are indicated between brackets in Table 4.

Condition Clean 15 dB 10 dB

Clean 7.64 10.33 31.47
MST 4.07 5.96 14.06

MST+SSM(512) 3.71 5.92 13.88
MST+SSM(1024) 3.80 5.48 12.74
MST+SSM(2048) 3.96 5.39 13.45

Table 4: Word error rate (WER) for different testing scenarios in-
cluding the Clean model, MST model, and SSM of different size
applied in conjunction with MST.

The results in Table 4 indicate that SSM brings considerable
improvement over MST even in the clean speech condition. A
1K map looks like a good compromise between size and WER
improvement. Maps in Table 4 are constructed in the cepstrum
domain, i.e. between the MFCC coef cients of clean and noisy
speech.

In Table 5 we compare between 1K maps built in both cep-
strum and after LDA+MLLT transforms. In the table the number
between brackets refers to the size of the feature space. Building
maps for the nal feature space (after LDA and MLLT) looks to be
slightly better than the original cepstral space.

In Table 5, We also tested using a GMM based environment
classi er to select the required map during testing. This result is
shown in the third row. The performance yielded this way is almost
the same as that of assuming we know the environmental mapping
for each utterance.

Condition Clean 15 dB 10 dB

MST+SSM(24) 3.80 5.48 12.74
MST+SSM(40) 3.57 4.76 12.79

MST+SSM(40)+Detect. 3.57 4.75 12.85

Table 5: Word error rate (WER) for SSM constructed for cepstrum
and after LDA+MLLT transform for the same conditions of Table
4. In the third row, “Detect” means using a GMM based classi er
to select environment during testing.

Finally we give the results for a new test set collected in the
transtac program. This test set has 11 male speakers and 2070
utterances in total for each test condition (clean, 15dB and 10dB).

It has considerably higher dif culty than the above Babylon test
set which manifests in a signi cantly higher WER.

The trend of the results on the transtac data in Table 6 fol-
lows that of the previous experiments on the Babylon data. In
particular, a map of size 1024 that is constructed in the nal 40-
dimensional feature space after LDA and MLLT results in consid-
erable improvements over MST.

Condition Clean 15 dB 10 dB

Clean Model 13.96 29.45 38.30
MST 11.50 22.39 28.92

MST+SSM(40) 11.64 18.95 24.63

Table 6: Word error rate (WER) for SSM constructed after
LDA+MLLT transform for the same conditions of Table 4 but for
a new more dif cult test set.

4. SUMMARY AND EXTENSIONS

We have presented a stochastic mapping technique for robust speech
recognition that uses stereo data. The idea is based on building a
GMM for the joint distribution of the clean and noisy channels dur-
ing training and using an iterative compensation algorithm during
testing. The proposed mapping was also interpreted as a mixture
of linear transforms that are estimated in a special way using stereo
data. It was found that the proposed method provides signi cant
improvement in performance when tested with the clean speech
model for speech recognition in the car and in conjunction with
multi-style training (MST) for large vocabulary speech recogni-
tion. One interesting extension of the proposed method, based on
the view that the map is a GMM, is adapting the map using linear
transformations and hence obtaining ner transformation capabil-
ity than the static map that is built from training data.
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