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ABSTRACT
This paper presents a word graph based feature enhancement

method for robust speech recognition in noise. The approach uses
signal processing based speech enhancement as a starting point, and
then performs Wiener ltering to remove residual noise. During the
process, a decoded word graph is used to directly guide the feature
enhancement with respect to the HMM for recognition, so that the
enhanced feature can match the clean speech model better in the
acoustic space. The proposed word graph based feature enhance-
ment method was tested on the Aurora 2 database. Experimen-
tal results show that an improved recognition performance can be
obtained comparing with conventional signal processing based and
GMM based feature enhancement methods. With signal process-
ing based Weighted Noise Estimation and GMM based method, the
relative error rate reductions are 35.44% and 42.58%, respectively.
The proposed word graph based method improves the performance
further, and a relative error rate reduction of 57.89% is obtained.

Index Terms— Speech recognition, Robustness, Speech enhan-
cement

1. INTRODUCTION

It has been well-known that the performance of Automatic Speech
Recognition (ASR) system degrades dramatically when there is a
mismatch between training and testing environments. For the ASR
systems deployed in real conditions, this mismatch is usually caused
by additive noise and channel distortion. Consequently, robust speech
recognition which has the ability to compensate various kinds of
noise and channel effect is desired as one of the key techniques for
real-world ASR applications.

Previous research which focused on minimizing environmental
mismatch can be categorized into the following three groups: (a) Sig-
nal processing based compensation, which tries to nd robust fea-
tures (e.g., Mel-Frequency Cepstral Coef cients, MFCC) or to com-
pensate noise and channel effect over the representation of speech
(e.g., Spectral Subtraction [1], Cepstral Mean Normalization, CMN
[2]); (b) Model based compensation, which tries to adapt model or
to transform feature with respect to the model so that the speech
variation in noisy environments can be better handled (e.g., Parallel
Model Combination, PMC [3], and Feature-space Maximum Like-
lihood Linear Regression, fMLLR [4]); (c) Combination of signal
processing based and model based methods, which tries to bene-
t from both approaches (e.g., model based compensation [5], and

Model Based Wiener lter, MBW [6]).
Generally speaking, the methods in the rst group are simple and

ef cient, while the methods in the second group can achieve a better
recognition performance at the cost of much more computational
load. Compared with the rst two groups, the methods in the third

group aim to take advantages of both signal processing based and
model based approaches, and try to achieve a reasonable recognition
performance while maintaining a relatively low computational cost.

In this paper, we present a word graph based feature enhance-
ment method, which belongs to the third group of the compensation
approaches. The proposed method is based upon Wiener ltering
of the Mel- lter bank energy, given (a) the input noisy speech, (b)
a signal processing based estimate of noise, and (c) a clean trained
Hidden Markov Model (HMM) which is used for both feature en-
hancement and speech recognition. In our approach, the input noisy
speech is rst de-noised and channel-normalized via signal process-
ing based method. The roughly processed signal is then decoded
using the clean speech model, and a word graph is obtained to rep-
resent the hypothesis space. After that, both static and dynamic fea-
tures of the model based clean speech are estimated, and the speech
parameter sequence for Wiener ltering is synthesized in Maximum
Likelihood (ML) sense. Finally, Wiener ltering is performed us-
ing the input noisy speech, the estimated noise, and the synthesized
model based clean speech. The output of the lter is re-decoded
in a word graph constrained second pass decoding, to get the nal
recognition results.

The main difference compared with previous research [5, 6] is
that in our approach, a word graph is constructed to directly guide
the feature enhancement process with respect to the clean speech
model for recognition. As a result, a same HMM can be used for
both enhancement and recognition, and the use of another Gaussian
Mixture Model (GMM) in [5, 6] becomes unnecessary. The word
graph based approach enables us to exploit the temporal resolution of
the HMM, as well as to improve the estimate accuracy of the model
based clean speech via imposing the explicit constraint between its
static and dynamic features. Therefore, the enhanced speech feature
after Wiener ltering can match the clean speech model better in the
acoustic space, and thus leads to an improved recognition perfor-
mance.

The rest of this paper is organized as follows: In Section 2,
the word graph based feature enhancement method is rst described
from a global point of view, and then speci ed in the details of the
processing steps. In Section 3, experimental results of the proposed
method are presented and compared with conventional methods. Fi-
nally, we draw our conclusions and future work in Section 4.

2. WORD GRAPH BASED FEATURE ENHANCEMENT

2.1. System Overview

The owchart of the word graph based feature enhancement method
can be illustrated by Fig. 1. The input noisy speech, X, is rst
fed into the signal processing based speech enhancement block, in
which Weighted Noise Estimation [7] is performed to get a rough es-
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Fig. 1. Flowchart of the word graph based feature enhancement.

timate of the noise spectrum N , as well as the corresponding clean
speech S1. Then, S1 is converted to MFCC coef cients, and the cep-
stral mean S1 is subtracted from it to normalize the channel effect.
After that, the normalized speech, S2, is decoded using the clean
speech HMM, and a word graph representing the hypothesis space
is constructed. By merging the kernel parameters of the clean speech
model according to their posterior probabilities, a model based esti-
mate of the clean speech, S3, can be synthesized. S3 is then trans-
formed back to Mel- lter bank energy, and Wiener ltering is per-
formed to get the nal estimate of the clean speech, S4. In the last
step, S4 is re-decoded in a constrained search space de ned by the
word graph, and the nal recognition output is obtained.

In the following subsections, the processing steps of the method
will be speci ed in details:

2.2. Signal Processing Based Speech Enhancement

The input noisy speech X is rst fed into the speech enhancement
block, where it is converted to the linear spectral domain, and signal
processing based speech enhancement is performed. The purpose of
this step is to get a rough estimate of the noise and clean speech with
relatively low computational cost. Because the accuracy of the word
graph decoding relies greatly on the Signal-to-Noise Ratio (SNR) of
the input speech, it is then necessary to remove the noise effect via
signal processing based enhancement before a clean trained speech
model can be applied.

In our approach, Weighted Noise Estimation [7] is performed
to estimate the noise spectrum. This method continuously updates
the noise estimate N , using weighted noisy speech according to the
estimated SNR. Consequently, the corresponding clean speech S1

can be obtained by using conventional spectral subtraction.
Besides additive noise, channel effect should also be consid-

ered. In our approach, CMN is performed on S1 to get the channel-
normalized MFCC coef cients, S2. Meanwhile, the cepstral mean
S1 is also stored for latter process.

2.3. First Pass Decoding and Word Graph Construction

S2 is decoded using the clean trained HMM to construct a word
graph which compactly represents the hypothesis space. Even af-
ter signal processing based speech enhancement, S2 may still have
some residual noise which can lead to incorrect decoding. But the
word graph based approach would have more chance that the cor-
rect hypotheses exist in the graph with relatively lower posterior
probabilities (or likelihoods) than the incorrect rst best hypothesis.
Therefore, they can still be recovered in the latter Wiener ltering
process with the help of the clean speech model.

Once the word graph has been decoded, kernel posterior proba-
bilities for each Gaussian component of the model can be calculated.
These posterior probabilities will serve as the weighting coef cients
for synthesizing the model based clean speech for Wiener ltering.
Using the word graph, the posterior probability of kernel k at time t,
given the entire observation sequence oT

1 can be formulated as:

p([k; t] | oT
1 ) =

�

∀[w;s,e]

s≤t≤e

j∈w,k∈j

p([w; s, e] | oT
1 ) · p([j; t] | w) · p([k; t] | j)

(1)

in which p([w; s, e] | oT
1 ) is the Word Posterior Probability (WPP)

of word w in the word graph, starting at time s and ending at time
e; p([j; t] | w), the state occupancy probability of state j at time t,
given w; p([k; t] | j), the occupancy probability of kernel k in state
j at time t.

In Eq. (1), p([w; s, e] | oT
1 ) is calculated as the conventional

WPP [8] de ned as:

p([w; s, e] | oT
1 ) =

�

∀M,[w;s,e]M1

∃n,1≤n≤M

w=wn,s=sn,e=en

�M
m=1 p(oem

sm
| wm) · p(wm | wM

1 )

p(oT
1 ) (2)

in which M is the number of words in a string hypothesis; p(oem
sm
|

wm) and p(wm | wM
1 ) are the scaled acoustic model likelihood and

language model likelihood, respectively. Within the word graph,
p([w; s, e] | oT

1 ) can be calculated ef ciently with the forward-
backward algorithm.

In our approach, state occupancy probability p([j; t] | w) is cal-
culated using Viterbi approximation, so it equals one for the states
of the best alignment path J([w; s, e], oe

s) and zero otherwise:

p([j; t] | w)
Viterbi≈ δ(j, Jt([w; s, e], oe

s)) (3)

Finally, p([k; t] | j) is calculated as the kernel output probability
normalized by the state output probability:

p([k; t] | j) =
cjk · p(ot | μk,Σk)
�L

l=1 cjl · p(ot | μl,Σl)
(4)

in which L is the number of Gaussian components of state j; cjk is
the component weight of kernel k; μk and Σk are the mean vector
and covariance matrix of that kernel, respectively.

2.4. Model Based Clean Speech Synthesis

The model based clean speech estimate for Wiener ltering is con-
structed in two steps. In the rst step, for each time frame t, the
expected values of the mean and covariance of the clean speech fea-
ture are calculated using the kernel posterior probabilities along with
the kernel parameters (diagonal covariance matrix is used in our ex-
periments):

μ̂(t) = E{μ | μk, p([k; t] | oT
1 )}

=
�K

k=1 p([k; t] | oT
1 ) · μk

(5)
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and

Σ̂(t) = E{[μ − μ̂][μ − μ̂]� | μk,Σk, p([k; t] | oT
1 )}

=
�K

k=1 p([k; t] | oT
1 ) · (Σk + μkμ

�
k )− μ̂(t)μ̂(t)� (6)

In contrast to former approaches that only use static means of the
speech feature, in Eqs. (5) and (6), we calculate the expected values
using both static and dynamic ( rst- and second-order delta) features
of the kernels. As a result, in the second step, the model based es-
timate of the clean speech S3 can be synthesized in ML sense by
imposing the explicit constraint between its static and dynamic fea-
tures. Following this way, the accuracy of the model based clean
speech for Wiener ltering can be improved by considering not only
its static “level”, but also its dynamic “trend”.

It can be seen from [9] that, the ML solution of S3 can be ob-
tained by solving the weighted normal equation:

W�U−1WC = W�U−1M (7)

where W is the weighting matrix for computing the dynamic fea-
tures, via W which imposes the static-dynamic constraint [9], and

C = [c(1)�, c(2)�, . . . , c(T )�]� (8)

is the synthesized clean speech S3 in terms of its MFCC parameter
sequence;

U−1 = diag[Σ̂−1(1), Σ̂−1(2), . . . , Σ̂−1(T )]

M = [μ̂(1)�, μ̂(2)�, . . . , μ̂(T )�]�
(9)

are the matrices composed by the expected mean and covariance val-
ues calculated by Eqs. (5) and (6). Because of the band diagonal
structure of W�U−1W, Eq. (7) can be solved ef ciently in a time-
recursive manner by the QR decomposition.

2.5. Wiener Filtering and Constrained Second Pass Decoding

Wiener ltering of the Mel- lter bank energy is performed in the lin-
ear spectral domain, so the estimated cepstral mean S1 is rst added
back to S3 (i.e., c(t) in the cepstral domain), and an Inverse Discrete
Cosine Transform (IDCT) followed by an exponential transform is
performed:

SFBE
3 (t) = exp

�
IDCT[c(t) + S1]

�
(10)

where the superscript “FBE” stands for Mel- lter bank energy.
Meanwhile, the input noisy speech X and the estimated noise N

can also be converted to Mel- lter bank energies. Wiener ltering
can then be performed to get the nal estimate of the clean speech,
S4:

SFBE
4 (t) =

SFBE
3 (t)

SFBE
3 (t) + NFBE(t)

·XFBE(t) (11)

In the last step, SFBE
4 is converted to the cepstral domain, where

its cepstral mean is removed so that a second pass decoding can be
performed. As we have already got a word graph after the rst pass
decoding, it is then possible to re-score the word graph or to re-
decode S4 within the constrained search space de ned by the word
graph. Because in most cases, the Word Graph Error Rate (GER,
computed by determining the sentence through the word graph that
best matches the reference in terms of word errors) is considerably
lower than the Word Error Rate (WER) of the rst best hypothe-
sis, the word graph constrained second pass decoding can achieve a
reasonably low WER while signi cantly reducing the computational
cost of another pass of completely free decoding.

Aurora 2 Reference Word Error Rate
Testing Set Set A Set B Set C Overall
WER (%) 38.42 42.59 30.57 38.52

Table 1. Aurora 2 reference Word Error Rate using MFCC 0DA.

Signal Processing Based Speech Enhancement
Testing Set Set A Set B Set C Overall
WER (%) 25.27 25.47 22.87 24.87
Relative 34.23% 40.21% 25.18% 35.44%

GER (%) 5.59 6.07 4.58 5.58

Table 2. Performance of signal processing based speech enhance-
ment (absolute, relative to the reference, and graph error rate).

3. EXPERIMENTS

3.1. Experimental Setup

The word graph based feature enhancement method has been tested
on the Aurora 2 database. Because transforms between spectral
domain and cepstral domain are needed, a 39-dimensional MFCC
feature vector, including c0 to c12 and their rst and second order
dynamic coef cients, was used in our system. An HMM used for
both enhancement and recognition was trained with ETSI provided
scripts [10] using HTK. As a result, 11 whole word digit models
were trained, each with 16 emitting states and 3 Gaussian compo-
nents per state. A three-state silence model was also constructed
with 6 Gaussian components per state, while a one-state short pause
model, tied with the central state of the silence model, was used.

Because our approach uses the same clean trained HMM for
both enhancement and recognition, the Aurora 2 clean-condition
training scenario is just suitable to evaluate the performance of our
algorithm. Besides the baseline system, three feature enhancement
methods have been compared in our experiments: (a) Signal process-
ing based speech enhancement using Weighted Noise Estimation and
CMN; (b) The GMM based feature enhancement method similar to
that of in [5, 6], and (c) The proposed word graph based feature en-
hancement method. Note that method (a) actually serves as a start-
ing point for the latter two feature enhancement methods (b) and (c)
(reference to Fig. 1).

3.2. Signal Processing Based Speech Enhancement

The reference word error rate of Mel-cepstrum on the Aurora 2 data-
base is given in Table 1 (slightly better than [10] because we use
c0 instead of log-energy). After signal processing based speech en-
hancement, the word error rate and word graph error rate are shown
in Table 2. It is shown from the table that, signal processing based
feature enhancement consistently improves the recognition perfor-
mance, and the overall relative error rate reduction is 35.44%. More-
over, the GER of the decoded word graph is signi cantly lower than
the WER of the rst best hypothesis (only about 1/4 ∼ 1/5). So
the word graph constructed in the rst pass decoding can be used not
only to guide the feature enhancement process, but also to narrow
the search space in the second pass decoding.

3.3. GMM Based Feature Enhancement

Conventional GMM based feature enhancement method was per-
formed in our experiments for comparison purpose, and its perfor-
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GMM Based Feature Enhancement
Testing Set Set A Set B Set C Overall
WER (%) 22.85 21.45 21.99 22.12
Relative 40.52% 49.64% 28.05% 42.58%

Table 3. Performance of the GMM based feature enhancement.

Word Graph Based Feature Enhancement
Testing Set Set A Set B Set C Overall
WER (%) 16.79 15.92 15.68 16.22
Relative 56.31% 62.62% 48.70% 57.89%

Word Graph Based Feature Enhancement (UD)
Testing Set Set A Set B Set C Overall
WER (%) 16.58 15.87 15.70 16.12
Relative 56.85% 62.73% 48.66% 58.15%

Table 4. Performance of the word graph based feature enhancement
(UD = unconstrained second pass decoding).

mance is given in Table 3. In this case, the acoustic model in Fig.
1 is replaced by a GMM with 128 Gaussian components, and the
word graph is a single path of the GMM states. As shown in the
table, GMM based feature enhancement reduces the word error rate
further, and the overall relative error rate reduction is improved to
42.58%.

3.4. Word Graph Based Feature Enhancement

The performance of the proposed word graph based feature enhance-
ment method is shown in Table 4. The results show that the perfor-
mance is further improved over the GMM based method, and an
overall relative error rate reduction of 57.89% is obtained. As we
were using word graph constrained second pass decoding, this result
is obtained with a minor increase of the computational cost. We also
compared the WER if we perform an unconstrained free decoding in
the second pass, and the result is given in the “UD” part of Table 4.
The experimental results suggest that the difference between the two
decoding scenarios is minimal, and the costly unconstrained second
pass decoding is not necessary. This is true especially when the GER
of the word graph is suf ciently low.

Fig. 2 shows the recognition results of the three enhancement
methods as a function of SNR. The word graph based feature en-
hancement method consistently achieves the best performance at dif-
ferent SNRs. It outperforms the other two methods especially when
SNR is low.

4. CONCLUSIONS

In this paper we presented a word graph based feature enhancement
method for robust speech recognition in noise. This method per-
forms signal processing based speech enhancement as a foundation,
and then using it to construct the word graph. After that, a maximum
likelihood estimate of the model based clean speech is synthesized
using the word graph and clean trained speech model, so Wiener
ltering can be carried out to get the output speech feature for recog-

nition. The word graph based method enables us to directly guide the
feature enhancement process with respect to the model for recogni-
tion, and the temporal resolution as well as the dynamic feature of
the HMM can also be exploited. Experimental results suggest that
the word graph based feature enhancement method outperforms con-
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Fig. 2. Performance of the enhancement methods against SNR.

ventional signal processing based and GMM based methods under
different SNRs. In future work, we are planning to adapt the method
to achieve an improved performance when not only the clean speech,
but also the noise statistical information, can be observed.
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