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ABSTRACT

The feature-domain dereverberation capabilities of a novel approach

for automatic speech recognition in reverberant environments are in-

vestigated in this paper. By combining a network of clean speech

HMMs and a reverberation model, the most likely combination of

the HMM output and the reverberation model output is found dur-

ing decoding time by an extended version of the Viterbi algorithm.

We show in this paper that the most likely HMM output represents a

good estimate of the clean speech feature sequence and can be used

as input to subsequent speech recognizers.

Index Terms— robust speech recognition, distant-talking

speech recognition, dereverberation, feature-domain processing,

Viterbi decoding

1. INTRODUCTION

Automatic speech recognition (ASR) is widely used in applications

like human-machine interfaces, dictation systems, electronic trans-

lators and automatic information desks. For many of these applica-

tions, hands-free operation is desirable, i. e. the user can talk from a

distance and move freely while communicating to the system with-

out the need of wearing a close-talking microphone.

As the distance between speaker and microphone in such a

distant-talking scenario is usually in the range of one to several me-

ters, additive distortions and reverberation of the desired signal ham-

per ASR. The focus of this paper is on reverberation-robust ASR.

One possibility to achieve reverberation robustness is to dere-

verberate the speech signal before it is processed by the recognizer.

Blind dereverberation is an extremely challenging task, since neither

the room impulse response (RIR) describing the acoustic path be-

tween speaker and microphone nor the speaker signal are available.

In [1] Yegnanarayana et al. propose to attenuate additional impulses

caused by reverberation in the linear prediction residual signal.

Using two or more microphones, exact inverse filtering is pos-

sible [2]. Direct estimation of multi-channel inverse filters is sug-

gested in [3] exploiting three fundamental properties of speech sig-

nals, namely nonwhiteness, nongaussianity, and nonstationarity. In

[4] the harmonic structure of speech is used for inverse filter deter-

mination.

For robust speech recognition, we do not need to estimate the

clean speech waveform. It is sufficient to estimate a clean speech

feature sequence. As the feature sequence contains less information

than the waveform, we believe that finding the clean speech feature

sequence is simpler than estimating the dereverberated waveform.

We propose to use a novel approach for robust speech recogni-

tion in reverberant environments, first introduced in [5] and [6], as a

preprocessing step to estimate clean speech feature sequences from

reverberant feature sequences directly in the feature domain. The

approach is based on combining a network of clean speech HMMs

and a reverberation model. In the decoding phase, the most likely

combination of the HMM output and the reverberation model output

is found by maximum likelihood estimation. We show in this pa-

per that the most likely HMM output represents an estimate of the

clean speech feature sequence and can be used as input to subsequent

speech recognizers.

The paper is organized as follows: In Section 2, the approach

introduced in [5, 6] is reviewed. Its application for feature-domain

dereverberation is then discussed in Section 3. Section 4 evaluates

the dereverberation capabilities by simulations and Section 5 con-

cludes the paper.

2. THE REVERBERATION MODEL BASED SPEECH

RECOGNITION APPROACH

We assume that the sequence X of reverberant speech feature vectors

x(n) is produced by a combination of a network Nλ of HMMs λp

describing the clean speech and a reverberation model η as illustrated

in Figure 1.

η

Nλ
S

X

H

∗

∗ denotes the appropriate

operator for combining

S and H

Fig. 1. Proposed feature production model.

If linear mel-frequency spectral (melspec) coefficients are used as

features, as assumed throughout the paper, the reverberant sequence

X can be approximated by the convolution of the clean sequence S

and the sequence H of realizations of the reverberation model

x(n) =

M−1∑
m=0

h(m, n)� s(n−m) ∀ n = 1 . . . N + M − 1 . (1)

Here,� denotes element-wise multiplication, s(n) and x(n) are sin-

gle feature vectors at frame index n of clean and reverberant speech,

respectively, and the vector h(m, n) is a realization of the reverber-

ation model for frame lag m and frame index n, while M and N
are the lengths of the reverberation model and the clean utterance,

respectively.
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The reverberation model η is a statistical representation of the

acoustic path between speaker and microphone in the feature domain

and can be considered as an iid matrix-valued random process (see

[6]).

Independently of the acoustic-phonetic modeling, the speech

recognition search problem can be formulated as finding the word

sequence Ŵ maximizing the product of the language model score

L(W ) associated with word sequence W and the acoustic model

score A(X|W ) of X given W

Ŵ = argmax
W

{L(W ) ·A(X|W )} . (2)

For the combined acoustic model according to Figure 1, the acoustic

score is given as

A(X|W ) = max
Q,S,H

{P (Q,S,H|Λ, η)} s. t. (1) (3)

= max
Q

{
P (Q|Λ) ·max

S,H
{P (S,H|Λ, η, Q)}

}

subject to (s. t.) the constraint (1) .

where Λ is the sequence of HMMs modeling W and Q is a possible

sequence of states through Λ.

If the acoustic score calculation accounts for the reverberation

model as given in Equation (3), most of the known search algorithms

(see e. g. [7], chapter 13 or [8]) can be used to solve the problem (2).

Accounting for the reverberation model is achieved by calculat-

ing the acoustic score A(X|W ) iteratively by an extended version

of the Viterbi algorithm as given by

γj(n) = max
i
{γi(n− 1) · aij ·Oij(n)}, (4)

∀j = 1 . . . I, n = 2 . . . N + M − 1,

Oij(n) = max
sij(n),Hij(n)

{ fΛ(j, sij(n)) · fη(Hij(n))} (5)

s. t. x(n) =

M−1∑
m=0

hij(m, n)� sij(n−m) , (6)

A(X|W ) = γI(N + M − 1) .

Here, γj(n) is the Viterbi metric for state j at frame n, aij is

the transition probability from state i to state j, fΛ(j, sij(n)) and

fη(Hij(n)) are the output densities of the HMM sequence Λ de-

scribing W and the reverberation model η, respectively, I is the

number of states in Λ. The subscript ij in sij(n) and Hij(n) in-

dicates that these vectors/matrices correspond to the current state j
and previous state i. Details about solving the inner optimization

problem (5), representing the key extension, are given in [6].

In this way, the combined acoustic model can be decoded, given

the reverberant feature sequence X, in order to find the most likely

word sequence Ŵ . While in [6], this approach is used directly to

find the best transcription Ŵ , we propose in the following section to

use this approach as a preprocessing unit to perform dereverberation

in the feature domain.

3. FEATURE DOMAIN DEREVERBERATION

In the following, we propose a feature-domain dereverberation algo-

rithm based on the extended Viterbi decoding, which determines an

estimate Ŝ of the clean speech feature sequence S corresponding to

X.

Figure 2 shows a schematic overview of the extended Viterbi re-

cursion. The inner optimization is solved in two steps. First, the esti-

mated clean speech feature vector sij(n) and the estimated feature-

domain RIR matrix Hij(n) are determined according to the con-

strained optimization problem (5, 6). To calculate Oij(n), these val-

ues are inserted into the corresponding densities. The vector sij(n)
is the most likely clean speech estimate for frame n, current state j
and predecessor state i.

Once the maximization (4) over all possible predecessor states i
has been performed, the most likely clean speech estimate sj(n) for
frame n and state j can be selected from the sij(n) vectors in the
following way

î = argmax
i

{γi(n− 1) · aij ·Oij(n)} ,

sj(n) = s
îj

(n) .

For each state j and each frame n, sj(n) is stored in a matrix of

clean speech vectors (see Figure 2).

When the entire utterance is decoded, the most likely state se-

quence Q̂ = q̂(1) . . . q̂(N + M − 1) corresponding to X can be

determined by conventional Viterbi backtracking (see e. g. [7], chap-

ter 8). Using this state sequence, the sequence of most likely clean

speech vectors Ŝ = ŝ(1) . . . ŝ(N + M − 1) can be extracted from

the matrix of clean speech vectors as given by

ŝ(n) = sj=q̂(n)(n) .

The sequence Ŝ is the most likely output of the clean speech

HMM network, given the reverberant sequence X, the HMM net-

work Nλ and the reverberation model η. Thus it can be considered

as a dereverberated version of X.

Extended
Viterbi

Trans−

Decoder

Transcription 1

Conventional
Recognizer

Feature
Extraction cription 2

ηNλ1 Nλ2

x(t) X Ŝ

Fig. 3. Extended Viterbi algorithm as preprocessing unit.

The dereverberated feature sequence Ŝ can be used as input to

a subsequent speech recognizer as shown in Figure 3. The HMM

network Nλ1 used by the extended Viterbi decoder and the HMM

network Nλ2 may be different. E. g. the output densities of Nλ1

may be single Gaussian densities while the output densities of Nλ2

may be mixtures of Gaussians.

In this way, the extended Viterbi decoder can be used as prepro-

cessing unit performing dereverberation in the feature domain.

4. SIMULATIONS

To analyze the dereverberation capabilities of the proposed ap-

proach, simulations of a connected digit recognition task using mel-

spec features are carried out. First we compare the melspec repre-

sentations of a clean, a reverberant and a dereverberated utterance.

Then the recognition rate of four different approaches is compared:

conventional recognizers trained on clean and reverberant speech,

respectively, applied to reverberant speech data, the approach of [6]

and the approach proposed in Section 3.

4.1. Experimental setup

The functionality of HTK [9] is extended by the approach of [6]

and by an estimation of the clean speech sequence Ŝ as proposed in

Section 3. Connected digit recognition is chosen as a simple example

of continuous speech recognition.
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Fig. 2. Illustration of the extended Viterbi recursion.

The static feature vectors are calculated in the following way: 24

melspec coefficients are calculated from the speech signal, sampled

at 20 kHz and 1st-order pre-emphasized with a coefficient of 0.97,

using a 512-point DFT based on a Hamming window of length 25 ms

and a frame shift of 10 ms, no Δ and ΔΔ coefficients are used.

The training is performed using 4579 connected digit utterances

from the TI digits [10] training data. For the training with reverber-

ant speech, the clean data are convolved with measured RIRs from

two different rooms. Room A is a lab environment with a reverber-

ation time of T60 = 300 ms and a signal-to-reverberation ratio of

SRR = 4 dB. Room B is a studio environment with T60 = 700 ms

and SRR = −4 dB.

A 16-state left-to-right model without skips over states is trained

for each of the 11 digits (’0’-’9’ and ’oh’). Both single Gaussian

output densities and mixtures of three Gaussians are used.

For the recognition, a silence model is added at the beginning

and at the end of the HMM network consisting of an 11-digit loop.

As test data, 512 test utterances randomly selected from the TI digits

test set are used. To obtain the reverberant feature sequences, the

clean test signals are convolved with RIRs from room A and room

B, respectively, before they are passed to the feature extraction unit.

To train the reverberation model ηA/ηB for room A/B with

length MA = 20/MB = 50, 36/18 impulse responses measured

in room A/B with different loudspeaker and microphone positions

with constant distance of 2.00 m/4.12 m are used (see [6]). For the

artificial reverberation of training data and for the training of the re-

verberation models, RIRs different from the RIRs used to generate

the test data (measured in the same room but at different microphone

positions) are used in order to maintain a strict separation of training

and test data.

4.2. Experimental results

Figure 4 shows the melspec representation of the utterance ”four,

two, seven” using a dB color scale. Comparing the clean (close talk

recording, Figure 4 a)) and the reverberant utterance (room B, Fig-

ure 4 b)), the dispersive effect of reverberation on the feature vector

sequence is clearly visible. E. g. the short period of silence before

the plosive /t/ in ”two” or the low energy region of the lower mel

channels for the fricative /s/ in ”seven” is largely filled with energy

from the preceding vowels in the reverberant utterance.

In the feature sequence generated according to the approach pro-

posed in Section 3, (Figure 4 c)) these regions of low energy are re-

stored to a large extent and the dispersion across frames is clearly

reduced. The rough-textured fashion of the dereverberated utterance

results from the assumption of statistical independence between dif-

ferent channels and different frames.

Word accuracies room A room B

in % number of Gaussians

recognizer input data 1 3 1 3

I conv. clean training X 51.5 63.7 13.4 14.0

II conv. reverb. training X 66.8 80.4 54.6 72.1

III approach of [6] X 77.6 - 71.6 -

IV conv. clean training Ŝ 77.5 80.5 71.7 72.1

Table 1. Comparison of word accuracies of a conventional HMM-

based recognizer, trained on clean and reverberant speech, the ap-

proach of [6] and the feature-domain dereverberation proposed in

Section 3 for single Gaussians and mixtures of three Gaussians.

Table 1 shows the word accuracies for conventional recognizers

trained on clean speech (I) and reverberant speech (II), respectively,

applied to the reverberant test sequences X, the approach proposed

in [6] (III) and the approach proposed in Section 3 (IV). For meth-

ods I and II, the results are given both for single Gaussian densities

and for mixtures of three Gaussians. As approach III is currently

only implemented for single Gaussian densities, no results for three

Gaussian mixtures can be reported. The results of IV are based on

the clean speech feature estimates based on single Gaussian densi-

ties (Nλ1 in Figure 3 uses single Gaussian output densities). For

the conventional recognizer working on the dereverberated features,

both single Gaussian densities and mixtures of three Gaussians are
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Fig. 4. Comparison of a) clean feature sequence S, b) reverberant

feature sequence X, and c) dereverberated feature sequence Ŝ in the

melspec domain using a dB color scale.

used (Nλ2 in Figure 3).

Table 1 confirms the findings of [6], namely that the approach

III is significantly more robust to reverberation than the conventional

approaches I and II using single Gaussian densities. In room B, ap-

proach III is even close to the reverberantly trained HMMs with mix-

tures of three Gaussians.

Using the estimated clean feature sequence in a conventional

recognizer (IV) with single Gaussian output densities results in an

almost identical word accuracy as obtained by approach III. Indeed,

the transcriptions of both methods are virtually identical. This can

be expected because the estimated clean speech feature sequence

is biased towards the initial transcription (Transcription 1 in Figure

3). Therefore, IV produces the same errors as III if identical clean

speech models are used.

If mixtures of three Gaussian are used in the output densities

of Nλ2, some of the errors of the initial transcription can be cor-

rected and the performance is increased. While a clear increase in

performance is observed in room A (from 77.6 % to 80.5 %), only a

marginal increase is obtained in room B (from 71.6 % to 72.1 %).

These results confirm the dereverberation capability of the ap-

proach IV. It is indeed remarkable, that the final conventional rec-

ognizer trained on clean speech can achieve similar results as the

extremely reverberation robust approach III using the same clean

speech models. Using different clean speech models Nλ1 and Nλ2

the performance of IV can be increased. However, further investi-

gation is required to optimize the combination of the clean speech

models Nλ1 and Nλ2 in order increase the gain in performance of

IV compared to III.

Future work includes evaluating the use of a clean speech model

Nλ1 with increased variance or a phoneme-class-based HMM net-

work Nλ1 instead of a network of word-level HMMs to decrease

the dependence of Ŝ on the initial transcription and thus to increase

the possibility of correcting errors of the initial transcription in the

second pass. Optimization of the balance between the clean speech

model Nλ1 and the reverberation model η in the extended Viterbi

algorithm will also be analyzed.

If a greater gain can be achieved by the final recognizer, a three-

pass version of the feature-domain dereverberation approach IV will

become attractive: In a first pass, the state/frame-alignment is deter-

mined by a conventional recognizer. In the second pass, the feature

domain dereverberation is performed based on the inner optimiza-

tion of Equations (5) and (6). Because then this optimization has

to be performed only once for each frame, the computational com-

plexity is significantly reduced compared to the full extended Viterbi

search. In the third pass, the dereverberated feature sequence is used

in a conventional recognizer to find the final transcription.

5. SUMMARY AND CONCLUSIONS

We showed in this paper that the reverberation model based speech

recognition method proposed in [6] can be extended to a feature-

domain dereverberation approach, if the most likely clean speech

estimate is extracted and used as input to a conventional recognizer

for clean speech. A comparison of a reverberant utterance and the

corresponding estimated clean speech feature sequence showed the

feature-domain dereverberation capability of the proposed approach.

Applying a conventional recognizer to the dereverberated fea-

ture sequence achieves a similar performance as the approach of [6]

if the same single Gaussian clean speech models are used. Using

a clean speech model with mixtures of three Gaussians, a slightly

increased performance could be achieved.

Future work includes the optimization of the variations between

the clean speech models Nλ1 and Nλ2 in order to increase the gain

of the second pass and the implementation of a three-pass ASR sys-

tem based on feature-domain dereverberation with reduced compu-

tational complexity.
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