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ABSTRACT

In this paper, a novel solution to the problem of unsupervised stream
weight estimation for multi-stream classi cation tasks is proposed.
Our work is based on theoretical results in [10] for the two-class
problem were the optimal stream weights are shown to be inversely
proportional to the single stream misclassi cation error. These two-
class results are applied to the multi-class problem by using mod-
els and “anti-models” (class-speci c background models) thus pos-
ing the multi-class problem as multiple two-class problems. A non-
linear function of the ratio of the inter- to intra-class distance is pro-
posed as an estimate for single stream classi cation error and used
for stream weight estimation. The proposed unsupervised stream
weight estimation algorithm is evaluated on both arti cial data and
on the problem of audio-visual speech recognition. It is shown that
the proposed algorithm achieves results comparable to the super-
vised minimum-error training approach under most testing condi-
tions.

Index Terms— Fusion Methods, Parameter Estimation, Error
Analysis, Speech Recognition, Audio-Visual Systems

1. INTRODUCTION

Information fusion methods have been extensively employed for
speech processing applications in the literature. In this work, the
performance of the automatic speech recognition (ASR) systems is
improved by using complementary features that are extracted either
from the audio and/or the video streams. In [1], the authors propose
an ASR system based on the multi-band approach, features from
different frequency bands with different reliability are combined
and weighted accordingly in a multi-stream speech recognition ap-
proach. In [2], features such as fundamental frequency are combined
with traditional spectral-based features to improve speech recogni-
tion performance. Visual information has also been integrated with
audio using the multi-stream approach [3]. For the AV-ASR case,
audio and video features contain complementary information. In ad-
dition, visual information is not affected by adverse recording condi-
tions signi cantly improving the robustness of the AV-ASR system
in noise.

An important problem found in these systems where multiple
feature “streams” are employed is the combination of these sources
of information. The integration is characterized by the stage at which
the information obtained from the different “modalities” is merged.
One approach is to work at the feature level. In this technique,
called Early Integration (EI), the features are concatenated in a single
stream [4]; for the particular case of audio and visual combination,
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EI has the drawback of not tacking into account the lack of syn-
chronicity in the feature streams. Alternatively the classi er scores
can be combined in the Late Integration (LI) scenarios [5]. In this
case, the synchronicity problem is solved but the temporal depen-
dencies are lost.

For different environments and noise conditions, not all the
sources of information are equally reliable. For example, for AV-
ASR the audio stream is sensitive to adverse recording conditions
which may be varying with time; depending on the type and level of
background noise the audio stream should be weighted more or less
in the decision process. Therefore a mechanism to adaptively weight
the contribution of the various information sources (feature streams)
in the nal decision is needed. In the literature, there are well known
methods for computing feature stream weights using minimum error
classi cation in a supervised manner: the reliability can be obtained
directly from the streams through training error minimization [6, 7].
Alternatively, and for changing recording conditions the reliability
of the streams can be computed for each environmental conditions,
typically using the signal-to-noise ratio (SNR); the stream weights
are then estimated using an SNR estimate in the eld [8, 9].

The algorithms proposed above are either supervised or require
speci c knowledge of the conditions in the eld. In this work, we
propose stream weight estimates that can be computed in an unsu-
pervised way (no class labels required or eld conditions). The pro-
posed algorithm builds on prior theoretical work on optimal stream
weight estimation [10] where it is shown that stream weights should
be approximately inversely proportional to the single stream classi -
cation error. We propose estimates of the single stream classi cation
error using limited amount of unlabeled data and show that the pro-
posed stream weight estimates perform well for both arti cial and
real data for an audio-visual speech classi cation task.

2. MULTI-STREAM CLASSIFICATION

For the two class
� � � � � � � problem the feature pdfs and class prior

probabilities are
� � 	 
 � � � � � � 	 
 � � � � � and

� � 	 � � � � 	 � � � � respec-
tively. See Figure 1 for a 2-D two-class classi cation problem vi-
sualization. Assuming a random variable  � that follows a normal
distribution with mean zero and variance �

�
� , � 	  � � � �

� �
that model

the estimation/modeling error

� 	 � � � 
 � � � � � 	 � � � 
 � �  � �
(1)

where
�

stands for the selected model/estimation method, and the
estimated and real distributions are

� 	 � � � 
 � � �
and

� 	 � � � 
 �
respec-

tively. As it was explained in [10] the deviation from the opti-
mal boundary value is given by the random variable  � 	  � �

 � � � 	 
 �
. For a feature vector broken up into two independent

streams
� 
 � � 
 � � , with dimension

� � � � � � � and stream weights
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Fig. 1. 2-D two-class classi cation.

� � � � � � � and under the assumption of a constant
� � � 	

in the re-
gion of interest the total (Bayes, estimation and modeling) error
can be computed and minimized as follows. Assuming that the
Bayes error increase is small compared to the decrease in estima-
tion/modeling error and that the estimation error for the � � �

class
and � � �

stream is a random variable that follows a normal distribu-
tion 
 � � �  � 
 � � � �

�
� � 	

, 
 is:
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and its variance is :

�
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where �
�! " � # �

� $ � �
�

� � is the total stream variance.
From the last equation it can be observed that the error can be

reduced by employing weights if the estimation errors are different
and/or if the single-stream classi cation errors are different. These
two factors correspond to the two cases that follow. First, assum-
ing the same Bayes classi cation error,

� � � � � � � 	 � � � � � � � � 	
, the

optimal weights can be computed as:

� �� � � # �
� $ � �

�
� % �# �

� $ � �
�

� % � & (4)

Second, assuming the same single-stream estimation error, � ! � �
� ! � , the optimal weights are� �� � � � � � � � � � 	

� � � � � � � 	 & (5)

where
� � � � � � � 	

,
� � � � � � � 	

are computed close to the decision
boundary. As discussed in [10] the quantities above approximate
the misclassi cation error for streams 1 and 2 respectively, and thus
the stream weights should be approximately inversely proportional
to the single stream misclassi cation error. Furthermore the weights
are constrained as follows:� � � � � � ' � � ( � � � � � ( ' & (6)

Next we apply these theoretical results to the problem of unsuper-
vised stream weight estimation.

3. UNSUPERVISED STREAM WEIGHT ESTIMATION

The problem at hand is stream weight estimation for multi-stream
classi cation in the eld. For example, for the problem of audio-
visual speech recognition it is common that the recording conditions
in the eld are both time-varying and different from the conditions
under which the acoustic models were trained. In this case, the
stream weights for the audio and video streams have to be adapted to
their optimal values without knowledge of the transcription or “class
labels”. Our goal is to devise robust algorithms for estimating the
stream weights using small amounts of unlabeled data, i.e., unsuper-
vised stream weight estimation. For the speech recognition example
stream weights are estimated at a per-utterance basis.

We attack the problem of unsupervised stream weight estima-
tion using the theoretical results summarized in the previous section
as our guide. However, these results are not directly applicable to
our problem due to two main reasons: (i) only results for the two-
class classi cation problem are available, while in general the multi-
class classi cation problem is of interest, and (ii) knowledge of class
membership for each observation vector

�
is required to compute the

likelihoods in equation Eq. 5, i.e., the theoretical results are directly
applicable only to the supervised stream weight estimation problem.

To resolve the rst issue we introduce the concept of anti-
models1. Speci cally, during training and for each class we separate
the training data into two groups: one containing the training exam-
ples of the class of interest and the other containing the rest of the
training examples. Models and “anti-models” are built from the two
training sets; anti-models can be though of as class-speci c “back-
ground/garbage” models. By creating models and anti-models the
multi-class classi cation problem is reposed as (multiple) two-class
classi cation (problems).

To resolve the second issue the single stream misclassi cation
error has to be estimated in an unsupervised way. It is well known,
that for the two class classi cation problem, when

� � � � � � 	
follow

Gaussian distributions  � ) � � �
� 	

, the Bayes error is a function of* � � � ) � � ) � 	 � + � . In general, the quantity
*

can be estimated in
an unsupervised way, by performing , -means classi cation and then
using the inter- and intra-class distances to estimate the quantities in
the nominator and denominator respectively. Indeed the intra-class
distance is the average distance between the means of each class and
the intra-class distance an estimate of the average class variance. In
our case, the mean of the model and anti-model are used to initialize
the , -means algorithm ( , � � ) for each class; the estimated

*
’s are

then averaged over all classes.
To gain better insight into the use of the inter- to intra-class ratio

see Fig. 1. A two-stream two-class classi cation problem is out-
lined: axes

� �
and

� �
correspond to the features in the two streams;

the (Gaussian) distributions for classes
� �

and
� �

are shown for
each stream and jointly. The relationship between the Bayes er-
ror (shaded area) and the inter- and intra-class distances is approxi-
mately inversely and directly proportional respectively.

Overall, the stream weights are computed using the inter-class
distance

� � - � . / � 0 � 1 � � 	
between classes

0
and

1
for stream � , nor-

malized by the intra-class distance
� � - � / 2 � � � � 	

for the class � in each
stream. For the two-stream two-class case the stream weights

� �
,

� �
are estimated as:� �� � � 3 4 5 � � - � . / � ' � � � � 	 + #

�
� � - � / 2 � � � � 	 � � $ �

� � - � . / � ' � � � � 	 + #
�

� � - � / 2 � � � � 	 � � $ � 6 �
(7)

where
4 � & 	

is a nonlinear function that relates
*

with the Bayes error
(erf function) and

3
is a constant accounting for the difference in

1Anti-digit models have been employed in utterance veri cation [13].
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estimation error in the two streams (see Eq. (4)). For the two-stream
multi-class case the quantity in function

� �
�

�
becomes

� � � � � � � � �
� �

�
� � �

�
� � � 	 


� � � � � �  � � � � � � � � 
� � � � � � � � �

� � � � � �
� �

�
� � �

�
� � � 	 


� � � � � �  � � � � � � � � 
� � � � � � � � 	 	 (8)

where
�

�
and

� �
�

are the centroids for the “model” and “anti-
model”2 for class � and



�

is over all classes.
Here are the main assumptions underlying the proposed unsu-

pervised stream weight estimation method: (i) Two-class classi ca-
tion error can be approximated as a function of inter- to intra-class
distance ratio. (ii) Multi-class classi cation error can be estimated
by the class/anti-class classi cation error averaged across all classes.
(iii) Single stream estimation error variance is approximately con-
stant for each stream under all eld conditions. We proceed next to
experimentally verify the validity of these assumption both for arti-
cial and real data.

4. ARTIFICIAL DATA EVALUATION

For the arti cial data experiments the next table summarizes the em-
ployed parameters for the 1-D Gaussian distributions for two class
 � 	 � � � � problem. A number 
 of samples was generated using

� 	 � �
 	 � 	 	 � �

� � �
�	 	 � � � � � � 	 � �

� � �
�� 	 � �

�  � � 	 � � �
�  �

�	 � � �
�  � � � � �

�  �
�� � � � � �

Table 1. Parameters for the Gaussian distributions; two classes� � 	 � � � �
and two streams stream

�  	 �  � �
.

those parameters and the total classi cation error was computed for
different weights. The samples were used to estimate the distribu-
tions for the two classes by a clustering process. The � -means pro-
cess with � � � was employed to cluster the samples. The esti-
mated clusters were used to compute the distances as explained in
the previous section. In Figure 2, the results obtained using the pa-
rameters speci ed in the Table 1 are presented. In each gure, the
thick solid lines (black) represent the estimated distributions and the
solid line (green) connects the � -mean estimated centroids. The thin
lines (blue and red) represent the real distributions. In the gure on
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Fig. 2. Clustering and distance computation representation for the
two classes problem (two example cases).

the left, computing the total error, the optimal value was equal to 0.5

2 � �
and � � �

are computed in an unsupervised way using � -means ini-
tialized from the “mis-matched” model and anti-model means; thus a more
appropriate term might be “adapted”model and anti-model centroids.

and the estimated weight
� 	

was 0.47 using the distances approach
proposed in the previous section. It can be seen that the true and
estimated values are close. In the gure on the right, one of the class
mean was moved from

� � 	 � �
to

� � 	 � �
. Employing the total

error computation the obtained optimal weight
� 	

was 0.6. Using
the distances approach the obtained value was 0.65. Overall, for ar-
ti cial data and for the two-class two-stream problem, the proposed
approach gives satisfactory results.

5. AUDIO-VISUAL SPEECH CLASSIFICATION

To verify our claims a set of experiments using real data were per-
formed. An audio-visual speech classi cation task was investigated
where the two feature streams contain audio and visual information
respectively.

For the purposes of this experiment the CUAVE audio-visual
speech database was employed [11]. The subset of the CUAVE
database used in these experiments consists of videos of 36 persons
each uttering 50 connected digits. The training set is made up of 30
speakers (1500 utterances) and the test set contains 6 speakers (300
utterances). The audio signal was corrupted by additive babble noise
at various SNR levels; the video signal was clean in all the experi-
ments. The audio features used were the “standard” Mel-Frequency
Cepstrum Coef cients (MFCC) computed for frames with duration
20 ms, extracted every 10 ms. The acoustic vectors, dimension� � � � �

, consist of 12-dimensional Mel-frequency cepstral coef-
cients (MFCCs), energy, and their rst and second order deriva-

tives. The visual features were extracted from the mouth region of
each video frame by gray-scaling, down-sampling and nally per-
forming a 2-D Discrete Cosine Transform (DCT). The rst 13 most
“energetic” DCT coef cients within the odd columns were kept [12]
resulting in a video feature vector of dimension

� � � � �
includ-

ing the rst and second order derivatives. Hidden Markov Mod-
els (HMMs) were used for both acoustic and video model training.
Context-independent whole-digit models with 8 states per digit and a
single Gaussian continuous density distribution per state were used.
The HTK HMM toolkit was used for training each stream, audio and
video, and for also for testing (using HTK’s built-in multi-stream ca-
pabilities).

An important part of the training process is the generation of
“anti-models” [13]. The class and anti-class models are both built
in the training phase using only “clean” data. The class model for
each stream is built following the traditional training process. The
anti-class models are trained using all the data that does not belong
to the corresponding class. For example, the model for the digit one
is created using all training data labeled as one, while the anti digit
model one is trained using all the data not labeled as one. At the end
of this process 20 model are obtained for each stream, ten models
for the digits (0-9) and ten anti-digits all with the same number of
parameters.

During the test phase these class and anti-class models are used
to initialize the � -means classi cation algorithm. Speci cally, the
means of the Gaussian distribution in the class and anti-class model
are used as the initial � -mean centroids3. Given that a-priori it is
not known to which class each utterance belongs, the features in
each utterance are split into two classes ( � � � ) in ten different
ways one for each digit and anti-digit model. The stream weights are
estimated using Eqs. (7),(8). The inter-

� � � � � � and intra-class
� � � � � 

3It is important to remark that these anti-class models are only used to
initialize the clustering process and that the models are trained using data
recorded in “clean”conditions (different than the conditions in the eld).
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distance is computed for each of the ten splits and the resulting inter-
to intra-class ration is averaged over the ten splits. Note that the
stream weights are estimated for each utterance.

In Figure 3, the digit classi cation results are shown for various
stream weight estimation algorithms. The thick solid curve (green)
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a nonlinear function, ŝ1 =
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Fig. 3. Digit recognition accuracy as a function of the SNR for the
proposed stream weights computation.

represents the results obtained searching by hand for the optimal val-
ues for the weights. The lower curve (black) uses equal weights in
both streams (0.5). These two curves serve as reference and used
to compare our approach. The rst (and crudest) stream weight
estimate is shown with the dashed curve (red) and corresponds to
Eqs. (7),(8) with

� � �
and

� �
�

�
being the identity function. To take

into account the estimation error a constant
�

(see Eq. (7)) can be
estimated on held-out data and used to improve the results; this is
represented with the dashed-dotted curve (blue). As seen in Eq. (7),
the optimal weights are a non-linear function

� �
�

�
of the distances.

The dotted curve (magenta) shows the results obtained using a non-
linear transformation of the weights, a parabola in this case (similar
to the erf function). This last curve provides a good match between
the

�
value and the Bayes error and results in performance compa-

rable to the hand-picked optimal stream weight values.

6. CONCLUSIONS

In this paper, we proposed a stream computation method for a
multi-class classi cation task based on theoretical results obtained
for a two classes classi cation problem and making use of an
anti-model technique. The proposed method employs only the
information contained in the trained models and requires a single
utterance to compute the stream weights. Therefore the obtained
results are of interest for the problem of unsupervised estimation
of stream weights for multi-streams classi cation and recognition
problems. The proposed method achieved comparable performance
with supervised minimum error estimation of the weights. In future
work, the problem of unsupervised weight estimation for statistical
recognition tasks will be addressed, as well instantaneous stream
weight estimation.
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