A GENERALIZED DYNAMIC COMPOSITION ALGORITHM OF WEIGHTED FINITE
STATE TRANSDUCERS FOR LARGE VOCABULARY SPEECH RECOGNITION

Octavian Cheng'?, John Dines' and Mathew Magimai Doss>

L IDIAP Research Institute, Martigny, Switzerland
2 Department of Electrical and Computer Engineering, The University of Auckland, New Zealand
3 International Computer Science Institute, Berkeley, California, USA
Email: {ocheng, dines} @idiap.ch, mathew @icsi.berkeley.edu

ABSTRACT

We propose a generalized dynamic composition algorithm of weighted

finite state transducers (WFST), which avoids the creation of non-
coaccessible paths, performs weight look-ahead and does not impose
any constraints to the topology of the WFSTs. Experimental results
on Wall Street Journal (WSJ1) 20k-word trigram task show that at
17% WER (moderately-wide beam width), the decoding time of the
proposed approach is about 48% and 65% of the other two dynamic
composition approaches. In comparison with static composition, at
the same level of 17% WER, we observe a reduction of about 60%
in memory requirement, with an increase of about 60% in decoding
time due to extra overheads for dynamic composition.

Index Terms— Weighted Finite State Transducers, Dynamic
Composition, Large Vocabulary Continuous Speech Recognition

1. INTRODUCTION

Recently, the use of Weighted Finite State Transducers (WFST) for
Large Vocabulary Continuous Speech Recognition (LVCSR) has be-
come an attractive approach [1, 2]. In simple terms, a WFST is a
finite state machine which maps sequences of input symbols to se-
quences of output symbols with an associated weight. In the appli-
cation of WFST in LVCSR, the idea is to represent each individual
knowledge source by a WFST and fully integrate them into a unified
WEST by the composition algorithm [2]. The fully integrated WFST
provides weighted mappings from HMM state sequences to word se-
quences. Thus the speech recognition problem becomes searching
for the mapped sequence with the lowest associated weight (cost).
The composition of knowledge sources is a one-off process and is
done offline. Therefore it is often referred to static composition.

There are two main advantages with the static approach. First
the decoder design is simple because all the knowledge sources are
integrated into one compact WFST. The knowledge sources are de-
coupled from the Viterbi search and therefore the decoder does not
need to perform any combination of knowledge sources during de-
coding. The second advantage is that the fully integrated transducer
can be further optimized by algorithms, such as, determinization,
minimization and weight-pushing [1, 3].

Despite the above advantages, there are several drawbacks with
the static approach. They include:

This work was supported by the EU 6th FWP IST integrated project AMI
and the Swiss National Science Foundation through the National Center of
Competence in Research (NCCR) on “Interactive Multimodal Information
Management (IM2)”

1-4244-0728-1/07/$20.00 ©2007 IEEE

IV -345

e The composition and optimization of the fully integrated WFST
has prohibitively high memory requirement when the con-
stituent WESTs are large and complex;

e The size of the fully integrated WEST can be very large, re-
sulting in large memory requirement during decoding;

e It does not allow on-line modification of knowledge sources
once they have been fully integrated.

One way of addressing these issues is to perform dynamic trans-
ducer composition during decoding. Instead of representing the en-
tire search space by an optimized transducer, it is possible to factor-
ize the search space into two or more transducers. These component
transducers are built statically and optimized separately. The combi-
nation is done dynamically during decoding.

In this paper, we investigate several existing dynamic composi-
tion approaches and propose our improved algorithm, which avoids
the creation of non-coaccessible transitions, performs weight look-
ahead and does not impose any constraints to the topology of compo-
nent WESTSs. The paper is organized as follows. Section 2 briefly de-
scribes static WFST composition and how a fully integrated WFST
is generated. Section 3 gives a general overview on current ap-
proaches to dynamic WFST composition. Section 4 describes our
dynamic composition algorithm. Experimental results on different
composition methods are shown in Section 5. Finally, Section 6 con-
cludes the paper.

2. STATIC WFST COMPOSITION

Static WFST composition involves integration of all the knowledge
sources. It can be represented by the following expression [2].

N = . (min(det(H o det(C o det(L o B))))) 1)

In the above expression, H represents the HMM topology; Cisa
WEFST which maps context-dependent phones to context-independent
phones; L is the lexicon WFST and G is the language model (LM)
WEST. The symbol o is the composition operator. Transducer opti-
mization algorithms, for example determinization and minimization,
are represented by det and min operators respectively. The ~ symbol
means that the WFST is augmented with auxiliary symbols which
are necessary for the success of transducer optimization. The 7 op-
eration replaces the auxiliary symbols by € (null) symbols. The final
transducer N is a fully integrated transducer which maps HMM state
sequences to word sequences.

ICASSP 2007

3. CURRENT APPROACHES TO DYNAMIC WFST
COMPOSITION

Several groups of researchers have proposed different approaches to
dynamic WFST composition. They include Dolfing [4], Willett [5],
Caseiro [6] and Hori [7]. The first step of any dynamic composition
algorithm is to factorize the entire search space into two or more
component WESTs before decoding. Approaches include:

1. Separating the entire G from other knowledge sources, result-
ing in two WFSTs [6];

2. Separating only part of the G (G} or so called the incremental
LM) from other knowledge sources. The remaining part of
the LM (G's or the smearing LM) is statically composed with
other knowledge sources, resulting in two WESTs [4, 5];

3. Factorizing the entire search space into multiple WESTs [7].

During decoding, the component WFST's are composed on-the-
fly. There are two main approaches for combining component trans-
ducers dynamically, namely with no look-ahead and with look-ahead.

The no look-ahead approach is basically the dynamic version of
static WFST composition. When two WFSTs, for example Land G,
are composed, the e-output labels of L are treated as “free-entries”.
They are not mapped with the input labels of G. These transitions
are duplicated into the composite transducer, which is L o G in this
example.

There are two problems with this approach. The first problem is
the creation of non-coaccessible transitions or so called “dead-end”
transitions [6]. They are the transitions which will not reach the final
state of a transducer. The second problem is the delay of the appli-
cation of transducer weights. Weights in G are not applied to the
composite transducer until there is an actual mapping between the
output symbols and the input symbols of the component transduc-
ers. For pruning efficiency, it is beneficial to introduce G weights
as early as possible before the actual mapping of symbols occurs,
hence the motivation for the incremental approach.

The look-ahead approach proposed by Caseiro [6] addresses the
above problems. He subdivides L into two regions, a prefix region
and a suffix region. The prefix region is the region between the initial
state of L and a non-¢ output transition. In Figure 1, the prefix region
is bounded by the grey rectangle. The region between the non-e
output transitions and the final state is the suffix region, which is
bounded by the white rectangle. A set of anticipated output labels
for each e-output transitions is built inside the prefix region. The
function of the anticipated label sets is to provide some look-ahead
information. An e-output transition in L will be expanded in the
composition only if there is a match between its anticipated label set
and the input labels of G.

The early application of G weights before encountering the ac-
tual non-€ output labels in L can also be done by finding the semiring-
sum (@) of the weights of the matched G transitions. In a fropical
semiring, the @ operator is min. Thus, it is very similar to language
model look-ahead [8], where partial language model weights are ap-
plied to tokens before reaching the leaf nodes (word-end nodes) of a
lexical tree.

4. PROPOSED APPROACH TO DYNAMIC WFST
COMPOSITION

We base our approach on that of Caseiro. Specifically, two compo-
nent WESTs are built: (Copto Lopt) and G, where Copt and Loy are

<eps>:<eps>/0.0

@ @ BN i
€:z/0.6 ! {.} '

{z}

Fig. 1. The lexicon WFST (L) in Caseiro’s approach. {} indicates
an anticipated output label set. {...} means the set containing all
symbols. #1 is the word-end marker.

min(det(C)) and min(det(L)) respectively. Component transduc-
ers are combined with look-ahead, avoiding the creation of “dead-
end” transitions. Early application of G weights is also performed.

There are however two major differences between our approach
and Caseiro’s approach. In [6], he presented a specialized algorithm
to compose L and G. He made two assumptions (or constraints)
about his approach. They are:

e Lisan acyclic graph, apart from the loop which connects the
final state of L to the initial state (Figure 1)

e No weight look-ahead is performed in the suffix region.

While the first assumption holds for a typical lexicon, it is not
true for an arbitrary WFST. For example, the (C’opt o Lopt) WFST
is cyclic in general. For the second assumption, no weight look-
ahead is performed in the suffix region. However, in order to achieve
better pruning efficiency, weights should be distributed or “pushed”
to the initial state as far as possible. Hence, look-ahead of weights,
as well as the avoidance of non-coaccessible transitions, should also
be performed in the suffix region.

In the following subsections, we describe how the anticipated
output label sets are found in the (Copt o Lopt) transducer. We also
describe how this transducer is dynamically composed with G dur-
ing decoding.

4.1. Finding the Anticipated Output Labels

The entire (C’Opt o iopt) transducer is subdivided into prefix regions.
Each prefix region is terminated with non-e output label transitions.
All the other transitions are e-output transitions.

Figure 2 illustrates an example of a cyclic (C’opt o iopt) trans-
ducer. For simplicity, only the output labels are shown. The trans-
ducer is segmented into three prefix regions. Each of them is ended
with non-¢ output label transitions. The anticipated output label set
can be found by a simple depth-first traversal algorithm.

Since the transducer is subdivided into segments of prefix re-
gions, word-end markers are now inside each region. When look-
ahead is carried out within each region during dynamic composi-
tion, it implies that transducer weights of GG could be pushed forward
across the word-end markers, that is, across the word boundaries.

4.2. The Dynamic Composition Algorithm

The dynamic composition algorithm follows a token passing paradigm
[9]. Each token holds an alignment of hypothesized words together
with the corresponding accumulated cost (accCost). In dynamic

IV - 346

{b}
b

/\ {b}
@ <eps>
\JEZL

-
o

Segment 3

e @
<eps
{d} (d}

@ <eps>
{c}
c

Segment 2

(a}
@

Segment 1

Fig. 2. A (C‘opi o iopt) WEST is segmented into prefix regions,
where label and weight look-ahead is performed.

composition, tokens reside in the (é’opt o iopt) transducer. Each
token also has a reference to the G transducer. This reference is nec-
essary for distinguishing two tokens when they arrive at the same
transition in the (C’opt o Lopt) transducer, but have different word
histories (i.e. different state number in the G transducer). Hence,
two additional attributes are required for each token. They are S
and pushedC'ost, where S¢ is the state number of the G transducer
to which the token is referencing and pushedC'ost is the accumu-
lated look-ahead weight that has already been applied to the token.

Table 1 shows the pseudocode of the dynamic composition al-
gorithm. The following points highlight the important parts of the
algorithm.

Step 1 - 2 Update S and reset pushedCost if the token is leaving
a prefix region and entering a new prefix region.

Step Sa Avoid tokens entering non-coaccessible transitions.
Step 5b - 5e Perform weight look-ahead.

Step 5f Organize tokens in lists. The U D list allows multiple to-
kens with different S¢ on the same transition. The D list
arranges tokens according to their next_S¢ references. This
enables early recombination of tokens with the same next_S¢
but different current Sg. It simulates suffix sharing as in
WEST minimization and it is similar to [10].

5. EXPERIMENTAL RESULTS

The aim of this experiment is to compare the performance and the
resource requirements of our dynamic composition algorithm with
static composition and other dynamic composition approaches. The
following list briefly describes the different approaches under test.

Static Perform decoding on the integrated (opt(éopt o iopt o G)).

Dynamic (Incremental, no look-ahead) Introduce unigram prob-
abilities to build (Copt © Lopt © Guni). Dynamically compose
this WEST with G¢yi—uni, Which is a trigram deviation from
unigram, during decoding without look-ahead (i.e. no control
on non-coaccessible paths and no weight look-ahead).

Dynamic (Caseiro) Build (Cypt 0 Lop:) and G WESTSs. Dynami-
cally compose them during decoding. Since the topology of
(Copt © Lopt) is different from L as in his approach, there
is no direct comparison. To simulate his method, the control
of non-coaccessible paths and weight look-ahead is prohib-
ited until the token reaches a word-end marker inside a prefix
region. This no look-ahead region can be considered as the
suffix region as in his method. Look-ahead resumes after the
token has passed the word-end marker.

1. A token resides on Transition (i : o/w) between States g1
and 2 in (Copt © Lopt). If 0 is non-e, the token reaches the
end of a prefix region. Go to Step 2. Otherwise, the token is
still within the prefix region. Go to Step 3.

2. Set S = next_Sq (See Step 5f for details about next_Sa).
Reset pushedCost = 0.0.

3. Retrieve S¢ from the token.
4. Get the set of transitions leaving from State ¢2.

5. For each transition ¢,

(a) Get the anticipated label set of t. Also get a set of in-
put labels from all the transitions leaving from State
S of G. Find the intersection between these two sets.
If there is no intersection, it means that ¢ is a non-
coaccessible transition, the token will not enter ¢. Go
back to Step 5 for the next ¢. Otherwise, go to Step 5b.

(b) Go through all the matched transitions at State S¢. Ac-
cumulate the semiring-sum (@) of the weights of all the
matched transitions. This is the look-ahead weight.

(c) Acost = (pushedCost)™* ® (look-ahead weight).
(d) Update accCost = (accCost) @ (Acost).
(e) Update pushedCost = look-ahead weight.

(f) Check the number of matched labels in the intersection.

e > 1 match, put the token (indexed by S¢) in the
U D (UnDecided) list of ¢. If there is a token with
the same key, keep the lower accCost token.

e Only 1 match, the next S (next_Sg) is the des-
tination state of the matched G transition. Put the
token in the D (Decided) list of t. The token is in-
dexed by the pair (next_Sg, matchedo) where
matchedo is the matched symbol in the intersec-
tion. Keep the token with the lower accCost if
there is a token with the same key.

Table 1: Pseudocode of the proposed algorithm. States g1 and 2
are any arbitrary states in (C’opt o Lopt) The symbols ¢ and ® are
semiring-add and semiring-multiply respectively.

Dynamic (Our approach) Build (C,pt0 Loyt) and G WFSTs. Dy-
namically compose them as described in Section 4.

The performance of different approaches was assessed using
the Wall Street Journal (WSJ1) corpus [11]. Cross-word triphone
HMM models were trained on the “si_tr_s” set of 38275 utterances
using 39-dimensional PLPs. A trigram LM, with 19979 unigrams,
3484372 bigrams and 2949590 trigrams, was used to test the 20k de-
velopment test set “si_dt_20” from WSJ1 database, consisting of 503
utterances. The experiment was carried out using Juicer [12, 13],
which is a WEST-based LVCSR decoder developed here at IDIAP.

Figure 3 shows the word error rate (WER) against the real-time
factor (RTF) of different approaches. Amongst all dynamic compo-
sition approaches, the proposed method shows better WER versus
RTF characteristics. One important observation is that the proposed
method significantly outperforms the other two dynamic approaches
at narrow and moderately-wide beam widths. At the level of 17%
WER (moderately-wide beam), the RTF of our approach is about
65% and 48% of the no look-ahead approach and Caseiro’s method

IV - 347

— - — Static
-- & --No look-ahead
— % - Caseiro

—=— Our approach

Beam width | Static | Dynamic (Our approach) | % reduction
150 1774 679 61.7
160 1775 697 60.7
180 1965 722 63.3
200 1966 762 61.2

WER (%)

0 5 10 15 20 25 30 35 40
Real-time factor (RTF)

Fig. 3. WER versus RTF of different approaches at various pruning
beam-widths (150, 160, 180 and 200).

40

35 X
Re :
.
— 30 o
£ -
-
] A o
8 20 X
1) R
£ e — - Static
=15 g
5 ‘ -- & --No look-ahead
< 10
— > - Caseiro
5 —a— Our approach
0
0 10000 20000 30000 40000 50000 60000

Average number of tokens per frame

Fig. 4. RTF versus Average number of tokens per frame of different
approaches at various pruning beam-widths (150, 160, 180 and 200).

respectively. This confirms that look-ahead is necessary for good
accuracy-time tradeoff in narrow and moderately-wide beam width
scenarios.

Comparing our approach with static composition, the WERs are
similar at the same pruning settings, which suggests that our ap-
proach is close to the WEST optimization performed during static
composition. At the same level of 17% WER, the RTF of the pro-
posed approach is about 60% more than the RTF of static compo-
sition. This is due to the overhead, for example, finding the set in-
tersection, searching tokens in a list, etc, required during dynamic
composition. Figure 4 illustrates the RTF against the average num-
ber of tokens per frame. Our approach has a steeper slope in the
figure, which indicates that it requires more time to process each
token than the static case. Also it can be seen that the other two dy-
namic approaches have a lot more tokens per frame than both our
approach and the static approach, which shows that the avoidance
of non-coaccessible transitions in our approach helps to reduce the
number of redundant tokens.

One of the major reasons to perform dynamic composition is the
reduction in memory requirement. Table 2 compares the maximum
memory usage (in MB) of our approach and the static approach. It
shows a reduction of about 60% in memory usage.

Table 2: Maximum memory usage (in MB) during decoding

6. CONCLUSIONS

We have proposed a generalized dynamic WEST composition algo-
rithm, which avoids the creation of non-coaccessible transitions, per-
forms weight look-ahead and does not impose any constraints to the
topology of the WFSTs. Experimental results show that our weight
look-ahead approach gives better WER versus RTF characteristics
than other dynamic composition approaches. Comparing with static
composition, it shows a significant reduction in memory usage.

7. REFERENCES

[1] M. Mohri, “Finite-state transducers in language and speech
processing,” Computational Linguistics, vol. 23, no. 2, pp.
269-311, 1997.

[2] M. Mohri, F. Pereira, and M. Riley, “Weighted finite state
transducers in speech recognition,” in ISCA ITRW Automatic
Speech Recognition: Challenges for the Millennium, 2000.

[3] M. Mohri and M. Riley, “A weight pushing algorithm for large
vocabulary speech recognition,” in Proc. Eurospeech, 2001.

[4] H.Dolfing and I. Hetherington, “Incremental langauge models
for speech recognition using finite-state transducers,” in Proc.
ASRU, 2001.

[5] D. Willett and S. Katagiri, “Recent advances in efficient decod-
ing combining on-line transducer composition and smoothed
language model incorporation,” in Proc. ICASSP, 2002.

[6] D. Caseiro and I. Trancoso, “A specialized on-the-fly algorithm
for lexicon and language model composition,” IEEE Tran. on
Audio, Speech and Language Processing, vol. 14, no. 4, 2006.

[7]1 T.Hori and A. Nakamura, “Generalized fast on-the-fly compo-
sition algorithm for WFST-based speech recognition,” in Proc.
Interspeech, 2005.

[8] S. Ortmanns, H. Ney, and A. Eiden, “Language-model look-
ahead for large vocabulary speech recognition,” in Proc. IC-
SLP, 1996.

[9] S. Young, N. Russell, and J. Thornton, “Token passing: A
simple conceptual model for connected speech recognition sys-
tems,” Tech. Rep. CUED/F-INFENG/TR38, Cambridge Uni-
versity Engineering Department, July 1989.

[10] D. Caseiro and I. Trancoso, “A tail-sharing WFST composition
algorithm for large vocabulary speech recognition,” in Proc.
ICASSP, 2003.

[11] D. Paul and J. Baker, “The design for the Wall Street Journal-
based CSR corpus,” in Proc. ICSLP, 1992.

[12] D. Moore, “The Juicer LVCSR Decoder - user manual for
Juicer version 0.5.0,” IDIAP-COM 03, IDIAP, 2006.

[13] D. Moore, J. Dines, M. Magimai Doss, J. Vepa, O. Cheng, and

T. Hain, “Juicer: A weighted finite-state transducer speech
decoder,” in MLMI’06, 2006.

IV - 348

