
COMPLEMENTARY SYSTEM GENERATION USING DIRECTED DECISION TREES

C. Breslin and M.J.F. Gales

Cambridge University Engineering Department
Trumpington Street, Cambridge, CB2 1PZ, UK

{cb404,mjfg}@eng.cam.ac.uk

ABSTRACT

Large Vocabulary Continuous Speech Recognition (LVCSR) sys-
tems often use a multi-pass decoding strategy with a combination of
multiple systems in the nal stage. To reduce the error rate, these
models must be complementary, i.e. make different errors. Pre-
viously, complementary systems have been generated by indepen-
dently training a number of models, explicitly performing all com-
binations and picking the best performance. This method becomes
infeasible as the potential number of systems increases, and does not
guarantee that any of the models will be complementary. This paper
presents an algorithm for generating complementary systems by al-
tering the decision tree generation. Confusions made by a baseline
system are resolved by separating confusable states, which might
previously have been clustered together using the standard decision
tree algorithm. Experimental results presented on a Broadcast News
Mandarin task show gains when combining the baseline with a com-
plementary directed decision tree system.

Index Terms— Speech recognition, Complementary systems,
System combination

1. INTRODUCTION

Large Vocabulary Continuous Speech Recognition systems typically
use a multi-pass decoding strategy where a number of systems are
combined in the nal stage. Schemes such as ROVER [1] and CNC
[2] are used to combine the outputs from the multiple systems to give
the nal hypothesis. One example of such a system is that built for
Broadcast News transcription at Cambridge university [3, 4]. Im-
provements can only be obtained from the nal combination stage if
the individual systems are complementary. That is, they must make
different errors. The standard approach to generating complemen-
tary systems is to independently train a number of different systems,
perform all possible combinations and select the best result. For ex-
ample, the individual systems might use different segmentations [4],
frontends [3], or dictionaries [4]. It is not possible to predict which
systems are complementary based on individual performance alone,
hence the need to perform all possible combinations. Furthermore,
it is not guaranteed that any independently trained systems will be
complementary, and it becomes increasingly dif cult to perform all
combinations as the number of potential systems grows.

Previous work has also shown that the combination of indepen-
dent systems with very different error rates often yields no gain, and
so it is desirable to combine independent systems with comparable
error rates [4]. However, this con icts with the requirement that
complementary systems must make different errors, and hence lim-
its the type of systems that can be combined in practice.

C. Breslin is funded jointly by the EPSRC and Toshiba Research Ltd.

Ensembles of complementary classi ers have successfully been
used in the machine learning community for many years. It has been
found that, for both theoretical and practical reasons, they often out-
perform the individual constituent classi ers [5]. Several methods
exist for training complementary classi ers but many of these are
not directly applicable to the task of automatic speech recognition.

For these reasons, recent work has begun to look at algorithms
for explicitly training complementary systems in ASR. These have
focused mainly on altering the training algorithm. For example,
boosting [6, 7] and Minimum Bayes Risk Leveraging [8] both weight
the training data set to focus later classi ers on portions of training
data which are poorly modelled by previous systems. These algo-
rithms no longer focus on individually training each system to have
the best performance, but rather on training an ensemble of models
so that their combination has the best performance.

Another approach to generating complementary systems is to
introduce randomness into the training. This is done in [9] by ran-
domly selecting portions of the training data, and in [10] via the de-
cision tree algorithm. Introducing randomness into a number of sys-
tems does lead to variety, but has the same problems as the standard
approach to generating complementary systems; speci cally that the
optimal order of combination is not predictable.

This paper presents a new algorithm for generating complemen-
tary systems by separating confusable states in the decision tree.
The following three sections describe the standard decision tree al-
gorithm, random decision trees and the directed decision tree algo-
rithm. Next, experimental results are presented on a Broadcast News
Mandarin task, and conclusions are presented.

2. DECISION TREE CLUSTERING

Decision trees are binary trees that are used to cluster states of HMMs
for parameter tying [11]. They contain questions, typically concern-
ing triphone context, at their nodes, and states are clustered at their
leaves. Decision trees are widely used as they provide an elegant
way to cluster unseen contexts, they allow expert knowledge to be
incorporated via the questions, and their size can be dependent on the
amount of training data available. There are three stages to building
a decision tree:

1. Statistics
• Obtain statistics for seen triphone contexts using the

forward-backward algorithm

2. Question Selection
• Recursively build the tree by selecting the question which

gives the highest data likelihood

3. Stopping criterion
• Stop building the tree when the data likelihood falls be-

low a threshold

IV ­ 3371­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

The decision tree algorithm does not consider whether states are
confusable or not when performing the clustering, and so it is pos-
sible that confusable states will be clustered. This is undesirable as
clustered states share the same parameters, and hence the informa-
tion available to distinguish them is limited to context and linguis-
tic information. The question selection stage in decision tree gen-
eration is locally optimal, which means that altering it can lead to
very different decision trees, and thus different HMM sets. For these
reasons, the decision tree algorithm is a good stage to focus on for
complementary system generation. A further advantage of altering
the decision tree algorithm is that no changes need to be made to
the training algorithm. However, the decision tree generation stage
typically occurs early in the process of building a system, and so
it is time-consuming to build many systems with different decision
trees. The remainder of this paper considers one existing and one
new approach to generating complementary systems by altering the
decision tree algorithm. These differ from previous work on deci-
sion tree generation in their aim to generate complementary systems
rather than one single best system.

3. RANDOM DECISION TREES

Introducing randomness is one way to create varying classi ers [5].
HMM parameter estimation algorithms are fairly robust to random-
ness, so an alternative is to introduce randomness into the decision
tree algorithm by altering the question selection stage [10]. Instead
of selecting the single best question, the tree is grown by randomly
choosing a question from the best N questions. An example of this
question selection compared to the standard approach is given in g-
ure 1. The decision tree algorithm becomes:

1. Statistics

• Obtain statistics for seen triphone contexts using the
forward-backward algorithm

2. Question Selection

• Recursively build the tree by randomly selecting from
the top N questions which give the highest data likeli-
hood

3. Stopping criterion

• Stop building the tree when the data likelihood falls be-
low a threshold

Likelihood
[70.1]
[69.6]
[69.5]
[68.8]
[67.5]

RANDOM

[65.4]

[64.3]

Left front fricative?
Right back fricative?
Right nasal?
Left vowel central?
Right liquid?

Left unvoiced fricative?

BEST

Question

Left nasal?

(N=5)

Fig. 1. Random tree question selection

A randomised decision tree does not guarantee that the systems
are complementary, but using multiple systems built on random trees
makes it more likely that confusable states will be separated in at
least some of the trees. Hence, it is expected that a combination of
outputs from systems built on random trees will give improvements.

The problem that systems should have comparable error rates is no
longer an issue as altering the value of N provides some control over
individual system performances. A larger value of N will tend to lead
to trees being very different from the best tree, and it is likely that
system performance will degrade. However, as there is no guarantee
of obtaining complementary systems, random decision tree systems
suffer from the problem that the optimal order of combination cannot
be predicted and hence all system combinations must be performed
in order to nd the best.

4. DIRECTED DECISION TREES

In order to address the weaknesses of standard and random decision
trees, it is desirable to build decision trees in such a way that explic-
itly separates confusable states. Directed decision trees do this by
using a second set of statistics when building the tree. This second
set of statistics is obtained by using a weighted forward-backward
algorithm, where the weighting function assigns a greater weight to
portions of the training data that are poorly modelled by a baseline
model. Hence, a higher weight will be assigned to states that are
easily confused. These weighted statistics are used to perform the
question selection, while the original statistics are used for the stop-
ping criterion. An example of this question selection is shown in

gure 2. The directed decision tree thus aims to separate confus-
able states in the decision tree, hence resolving confusions made by
the baseline recogniser, and is expected to be complementary to the
baseline. The directed decision tree algorithm is:

1. Statistics

• Obtain original statistics for seen triphone contexts

• Obtain weighted statistics for seen triphone contexts

2. Question Selection

• Recursively build the tree by selecting the question which
gives the highest likelihood with respect to the weighted
statistics

3. Stopping criterion

• Stop building the tree when the data likelihood falls be-
low a threshold, with respect to the original statistics

Question

Left front fricative?
Left vowel central?

Right liquid?
Right nasal?
Left nasal?

Right back fricative?
Left unvoiced fricative?

[69.6]

[70.1]
[68.8]

[67.5]
[69.5]
[65.4]

[64.3]

Original Weighted

[35.8]
[36.3]

[37.4]
[37.2]

[34.2]

[36.7]

[35.3]

DIRECTED

ORIGINAL

Fig. 2. Directed tree question selection

A suitable method for weighting the training data is needed.
There are many existing applications which make use of a weighted
training data set, typically as part of the HMM training algorithm.
For example, boosting [6, 7], active training [12] and MBRL [8].
These apply weightings at various levels; at the utterance level [7],
the word level [8] or the frame level [6]. They also differ in the form
of weighting function used, and how that weighting is applied during
training.

IV ­ 338

TODAY
REF:

CN:

HALLOWEEN=0.3

TODAY=0.9

DAY=0.1

IT’S

IT’S=0.6

!NULL=0.3

WAS=0.1

EVEN=0.7

HALLOWEEN

Fig. 3. Calculating the weighting function

Reference word Weight

IT’S 0.4
HALLOWEEN 0.7
TODAY 0.1

Table 1. Weights for words in gure 3 using equation 1

The weighting function itself should re ect how well classi ed
the training data is. One possibility is to use a con dence measure,
for example the likelihood-ratio [12] to identify correctly recognised
portions of the training data. The drawback of this approach is that
con dence measures are not always reliable. Alternatives include
using the reference transcription to identify errors and basing the
weighting function around, for example, word posteriors [8] or a
discriminative criterion such as the pseudo-loss used in boosting.

The nal consideration is how to apply the weighting function in
training. Applying a weighting at the utterance level is straightfor-
ward as the utterance boundaries are already de ned, either manually
or by automatic segmentation. Applying the weight at a ner granu-
larity, e.g. word level, requires some further processing. One option
is to force-align the training set utterances to obtain word bound-
aries, and hence weight the observations for a particular word [6].
This may lead to errors at word boundaries. In contrast, word-level
weights can be applied directly to states and hence avoid the need
for force-alignment [8].

In this paper, the weighting is done as follows. Weights are cal-
culated for each reference word by obtaining confusion networks for
each training set utterance and aligning these with the reference tran-
scription, as in gure 3. This makes it straightforward to see whether
a word is correctly modelled or not. A weighting function based on
average word posteriors is used:

l(W̃) =

�
1 − 1

S

S�
s=1

P (W̃|O;M(s))

�α
(1)

The second term in the weighting function is the average pos-
terior of the reference word given a number of previous systems
M(1) · · ·M(S) and so is directly related to how well that particu-
lar word is modelled. The weighting is applied by multiplying each
state occupancy count by the weight of the word it relates to. Using
this weighting function with α = 1, the losses of the words in g-
ure 3 are given in table 1. The effect is to assign a higher weighting
to reference words with low posterior. The effect of increasing α in
this equation is to reduce the proportional in uence of well modelled
words and increase the in uence of poorly modelled words. This in
turn leads the algorithm to focus more and more on the very poorly

CN-decoding
Decision Tree dev04f eval03m eval04 y1q1

BASELINE 15.8 8.7 26.4 31.3

RANDOM
BEST 15.7 8.9 26.5 31.0

WORST 16.4 9.1 27.0 31.3
DIRECTED 15.3 8.8 26.2 31.0

Table 2. Random and Directed Tree baseline results (CER %)

CNC with BASELINE
Decision Tree dev04f eval03m eval04 y1q1

RANDOM
BEST 15.0 7.7 25.8 29.5

WORST 15.4 7.9 26.0 30.0
DIRECTED 15.1 7.8 25.9 29.5

Table 3. Random and Directed Tree combination results (CER %)

modelled training data. If a particular model has a large number of
reference words with posterior close to 1, it may be useful to increase
α and so decrease the in uence of these words.

5. EXPERIMENTAL RESULTS

Experiments were performed on a Broadcast News Mandarin task.
The baseline systems were trained using 148 hours of data; 28 hours
of Hub-4 data released by the Linguistic Data Consortium (LDC)
with accurate transcriptions, and 120 hours of TDT4 data with only
closed-caption references provided. Light supervision techniques
were used on the latter portion. A trigram language model with a 50k
wordlist was used for decoding. Trigram lattices were converted to
confusion networks in order to perform confusion network decoding
for the individual system results [13]. This allows the gains achieved
by combination to be seen easily. Results are given on four test sets:
dev04f consists of 0.5 hours of CCTV data from shows broadcast
in November 2003, eval04 includes 1 hour of data from CCTV,
RFA and NTDTV broadcast in April 2004, eval03m is 0.6 hours
of mainland shows from February 2001 and y1q1 is 3 hours of data
from October 2005. This system is fully described in [3]. In contrast
to [3], these experiments use no speaker adaptation, and the rst set
of experiments uses an ML trained baseline.

5.1. Random and Directed trees

The rst set of experiments compares directed to random decision
trees. The baseline system was built from a standard decision tree,
with 16 component GMMs for each state and a 39 dimensional fea-
ture vector. This vector consisted of 13 PLP features with 1st and
2nd derivatives added, and there were 6070 unique states. Five ran-
dom decision trees were also built using a value of N = 5, and
the number of unique states varied from 5585 to 5618. A directed
decision tree was built using the baseline ML system to gather the
weighted statistics and the weighting described in the previous sec-
tion with α = 1; this tree contained 5830 unique states. The number
of states in a system did not appear to have any correlation with the

nal error rates, implying that any gains obtained were from the dif-
ferent methods of state tying rather than a change in the number of
model parameters.

Table 2 shows the individual system results for the baseline, ran-
dom and directed decision tree systems. For the random systems, the
best and worst performances are given. The best and worst models
differed between testsets, and numbers are individually chosen for
each testset from the ve random tree systems. It can be seen that the

IV ­ 339

directed decision tree system performs as well as or better than the
best random decision tree system on all testsets, and outperforms the
baseline on three of the four sets. In contrast, the individual random
systems tend to perform slightly worse than the baseline system.

Table 3 shows the performance of the random and directed tree
systems when combined with the baseline. Again, the best and worst
performances for the random systems were picked separately for
each test set. The combination of random systems with the base-
line gave improvements over the individual system performances, as
has been seen previously [10]. The directed tree system performs
marginally worse than the best random tree system, yet signi cantly
better than the worst. Interestingly, the best performing individual
random system did not necessarily correspond to the best result in
combination, highlighting the fact that the optimal order of combi-
nation is not predictable.

It is expected that if many random trees are built, the best of
these would outperform both the baseline and the directed tree sys-
tems. However, these experiments show that the directed tree per-
formance is close to that of the best random tree, without the uncer-
tainty associated with randomness. In addition, the directed tree led
to a time saving when building the systems as there was no need to
train multiple systems based on multiple trees.

5.2. Discriminative training

The previous section showed how directed decision trees perform
when combined with an ML baseline, but it is unclear whether these
gains will still be seen with a more complex model. Hence, a sec-
ond set of experiments evaluated whether a discriminatively trained
baseline could bene t from combination with a directed decision tree
system.

An MPE baseline was built from the previous ML system by rst
expanding the feature vector to 52 dimensions by adding the 3rd
derivatives, then mapping down to 39 dimensions using an HLDA
transform. Next, pitch was added, and a re-ordering of components
was performed based on state occupancies. Thus the feature vector
was 42 dimensions, and there was an average of 16 components per
state. Finally, MPE training was performed with an MMI prior for
I-smoothing. A new directed decision tree was built using weighted
statistics from this MPE baseline, and an MPE trained directed-tree
system was built in the same way.

Table 4 shows the results obtained using these two systems.
Firstly, the individual results for each system are presented. In con-
trast to the ML system, the directed decision tree system no longer
outperforms the baseline. However, when the two systems are com-
bined, improvements in error rate are still seen. For example, on
the y1q1 set, the individual system error rates are 30.0 and 30.1%
CER, yet the combination gives an error rate of 28.9%; a gain of
1.1% absolute on top of the gain achieved from discriminative train-
ing. Similar relative gains are seen on the three other testsets.

M Decision Tree dev04f eval03m eval04 y1q1

S0 BASELINE 12.5 7.2 21.2 30.0
S1 DIRECTED 12.1 7.4 21.2 30.1

S0 + S1 CNC 11.7 6.3 20.5 28.9

Table 4. MPE system combination results (CER %)

6. CONCLUSIONS

This paper has presented a new algorithm for building complemen-
tary systems based on separating confusable states in decision trees.

This algorithm differs from standard decision tree generation by us-
ing weighted statistics alongside the original statistics when growing
the decision tree. By weighting the training data to re ect confus-
ability, states which are easily confused in the training set are sepa-
rated in the decision tree. This implicitly builds complementary sys-
tems, compared to previous explicit methods which alter the training
algorithm.

This algorithm was evaluated using a weighting function based
on word posteriors, and was compared to a previous approach based
on random decision trees. Using this particular weighting function,
the directed tree system was found to outperform both the baseline
and random tree systems individually. When combined with the
baseline system, it was found to perform almost as well as the best
random tree system, yet signi cantly better than the worst random
system. The advantage of the directed tree algorithm is that only one
system needs to be built, rather than multiple systems. Further exper-
iments showed that the gains from using directed trees are additive
when discriminative training is also performed.

7. REFERENCES

[1] J.G. Fiscus, “A post-processing system to yield reduced
word error rates: Recogniser output voting error reduction
(ROVER),” in Proc. IEEE ASRU Workshop, pages 347-352,
1997.

[2] G. Evermann and P. C. Woodland, “Posterior probability de-
coding, con dence estimation and system combination,” in
Proceedings Speech Transcription Workshop, College Park,
MD, 2000.

[3] R. Sinha, M.J.F. Gales, D.Y. Kim, X.A. Liu, K.C. Sim, and P.C.
Woodland, “The CU-HTK Mandarin broadcast news transcrip-
tion system,” in Proceedings ICASSP, 2006.

[4] M.J.F. Gales, D.Y. Kim, P.C. Woodland, H.Y. Chan, D. Mrva,
R. Sinha, and S.E. Tranter, “Progress in the CU-HTK broadcast
news transcription system,” IEEE Trans. Speech and Audio
Processing, vol. 14, pp. 1513–1525, 2006.

[5] T.G. Dietterich, “Machine learning research: Four current di-
rections,” The AI Magazine, 1997.

[6] R. Zhang and A. I. Rudnicky, “A frame level boosting training
scheme for acoustic modelling,” in Proceedings ICSLP, 2004.

[7] C. Meyer, “Utterance-level boosting of HMM speech recog-
nisers,” in Proceedings ICASSP, 2002.

[8] C. Breslin and M.J.F. Gales, “Generating complementary sys-
tems for speech recognition,” in Proceedings ICSLP, 2006.

[9] L. Breiman, “Bagging predictors,” Machine Learning, vol.
24(2), pp. 123–140, 1996.

[10] O. Siohan, B. Ramabhadran, and B. Kingsbury, “Constructing
ensembles of ASR systems using randomized decision trees,”
in Proceedings ICASSP, 2005.

[11] J. Odell, The use of context in large vocabulary speech recog-
nition, Ph.D. thesis, 1995.

[12] L.M. Arslan and J.H.L. Hansen, “Selective Training for Hid-
den Markov Models with Applications to Speech Classi ca-
tion,” IEEE Trans. Speech and Audio Processing, vol. 7, pp.
46–54, 1999.

[13] L. Mangu, E. Brill, and A. Stolke, “Finding consensus among
words: Lattice-based word error minimization,” in Proceed-
ings Eurospeech, 1999.

IV ­ 340

