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ABSTRACT

To precisely model the time dependency of features is one of the im-
portant issues for speech recognition. Segmental unit input HMM
with a dimensionality reduction method is widely used to address
this issue. Linear discriminant analysis (LDA) and heteroscedastic
discriminant analysis (HDA) are classical and popular approaches to
reduce dimensionality. However, it is difficult to find one particular
criterion suitable for any kind of data set in carrying out dimension-
ality reduction while preserving discriminative information.

In this paper, we propose a new framework which we call power
linear discriminant analysis (PLDA). PLDA can describe various cri-
teria including LDA and HDA with one parameter. Experimental
results show that the PLDA is more effective than PCA, LDA, and
HDA for various data sets.

Index Terms— Speech recognition, Feature extraction, Multi-
dimensional signal processing

1. INTRODUCTION

Hidden Markov Models (HMMs) have been widely used to model
speech signals for speech recognition. However, HMMs cannot pre-
cisely model the time dependency of feature parameters. In order
to overcome this limitation, many extensions have been proposed
[1–3]. Segmental unit input HMM [1] is widely used for its effec-
tiveness and tractability. In segmental unit input HMM, a feature
vector is derived from several successive frames. The immediate use
of several successive frames inevitably increases the dimensional-
ity of parameters. Therefore, a dimensionality reduction method is
performed to spliced frames.

Linear discriminant analysis (LDA) [4,5] is widely used for this
purpose and a powerful tool to preserve discriminative information.
LDA assumes each class has the same class covariance [6]. How-
ever, this assumption does not necessarily hold for a real data set. In
order to overcome this limitation, several methods have been pro-
posed. Kumar et al. incorporated the maximum likelihood esti-
mation as an objective function to estimate parameters for differ-
ent Gaussians with unequal covariances [7]. Saon et al. proposed
another objective function similar to Kumar’s and showed its re-
lationship with a constrained maximum likelihood estimation [8].
Both Kumar’s and Saon’s heteroscedastic extensions are called het-
eroscedastic discriminant analysis (HDA). The effectiveness of these
methods for some data sets has been experimentally shown. How-
ever, it is difficult to find one particular criterion suitable for any kind
of data set.

In this paper, we focus on LDA and Saon’s HDA, and give a new
interpretation of them. Then, we propose a new framework which

we call power linear discriminant analysis (PLDA). PLDA can de-
scribe various criteria including LDA and HDA with one parameter.
Experimental results show the effectiveness for two data sets which
collected using a close-talking microphone and a hands-free micro-
phone.

The paper is organized as follows: Classical LDA and HDA are
reviewed in Section 2. Then, a new framework of PLDA is pro-
posed in Section 3. Experimental results are presented in Section 4.
Finally, conclusions and future work are given in Section 5.

2. SEGMENTAL UNIT INPUT HMM

For an input symbol sequence o = (o1,o2, · · · ,oT ) and a state
sequence q = (q1, q2, · · · , qT ), the output probability of segmental
unit input HMM is given by the following equations [1].
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=
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≈
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≈
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q

Y
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`
oi−(d−1), · · · ,oi | qi

´
P (qi | qi−1) , (3)

where T denotes the length of input sequence and d denotes the num-
ber of successive frames. The immediate use of several successive
frames as an input vector inevitably increases the dimension of pa-
rameters. Then, PCA, LDA, or HDA was used to reduce dimension-
ality [1, 3, 8].

Here, we briefly review LDA and HDA. In addition, we investi-
gate the effectiveness of LDA and HDA for some artificial data sets.

2.1. Linear Discriminant Analysis

Given n-dimensional features xj ∈ R
n(j = 1, 2, . . . , N), e.g.,

xj =
ˆ
oT

j−(d−1), · · · ,oT
j

˜T
, let us find a transformation matrix

B ∈ R
n×p that maps these features to p-dimensional features zj ∈

R
p (j = 1, 2, . . . , N) (p < n), where zj = BT xj , and N denotes

the number of features.

Within-class and between-class covariance matrices are defined
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as follows [4, 5]:

Σw =
1

N

cX
k=1

X
xj∈Dk

(xj − —k) (xj − —k)T

=

cX
k=1

PkΣk, (4)

Σb =
cX

k=1

Pk (—k − —) (—k − —)T , (5)

where c denotes the number of classes, Dk denotes the subset of
features labeled as class k, — is the mean vector for all the classes,
—k is the mean vector in the class k, Σk is the covariance matrix in
the class k, and Pk is the class weight, respectively.

In LDA, the objective function is defined as follows:

JLDA (B) =

˛̨
BT ΣbB

˛̨
|BT ΣwB| . (6)

LDA finds a transformation matrix B that maximizes Eq. (6).

2.2. Heteroscedastic Discriminant Analysis

LDA is not the optimal transform when the class distributions are
heteroscedastic. Kumar et al. incorporated the maximum likelihood
estimation of parameters for differently distributed Gaussians [7].
Saon et al. proposed another objective function similar to Kumar’s
and showed its relationship with a constrained maximum likelihood
estimation [8]. Both Kumar’s and Saon’s heteroscedastic extensions
are called heteroscedastic discriminant analysis (HDA).

In this paper, we focus on Saon’s HDA objective function:

JHDA (B) =

cY
k=1

 ˛̨
BT ΣbB

˛̨
|BT ΣkB|

!Nk

. (7)

The solution to maximize Eq.(7) is not analytically obtained. There-
fore, its maximization is performed using a numerical optimization
technique.

2.3. Dependency on data set

In Figure 1, two-dimensional two- or three-class data features are
projected onto a one-dimensional subspace by LDA and HDA. Fig-
ure 1(a) shows that HDA has higher separability than LDA for the
data set used in [8]. On the other hand, as shown in Figure 1(b) ,
LDA has higher separability than HDA for another data set. Fig-
ure 1(c) shows the case with another data set where both LDA and
HDA have low separabilities. Thus, LDA and HDA do not always
classify the given data set appropriately. All results show that the
separabilities of LDA and HDA depend significantly on data sets.

3. GENERALIZATION OF DISCRIMINANT ANALYSIS

As shown above, it is difficult to separate appropriately every data
set with one particular criterion such as LDA and HDA. Here, we
concentrate on providing a framework which integrates various cri-
teria.

LDA projection

HDA projection

(PLDA m=0)

Class 1

Class 2

(a)

Class 1
Class 2

Class 3

LDA projection

(PLDA m=1)

HDA projection

(b)

LDA projection

HDA projection

PLDA projection (m=10)

Class 1
Class 2

Class 3

(c)

Fig. 1. Examples of dimensionality reduction by LDA, HDA and
PLDA.

3.1. Relationship between LDA and HDA

From a different viewpoint, LDA and HDA objective functions can
be rewritten as

JLDA (B) =

˛̨
BT ΣbB

˛̨
|BT ΣwB| =

˛̨̨
Σ̃b

˛̨̨
˛̨̨
˛̨ cX
k=1

PkΣ̃k

˛̨̨
˛̨
, (8)

JHDA (B) =

cY
k=1

 ˛̨
BT ΣbB

˛̨
|BT ΣkB|

!Nk

∝

˛̨̨
Σ̃b

˛̨̨
˛̨̨
˛̨ cY
k=1

Σ̃Pk
k

˛̨̨
˛̨
, (9)

where Σ̃b = BT ΣbB and Σ̃k = BT ΣkB are between-class and
class k covariance matrices in the projected space, respectively.

Both numerators denote determinants of the between-class co-
variance matrix. In Eq. (8), the denominator can be viewed as a
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determinant of the weighted arithmetic mean of the class covariance
matrices. Similarly, in Eq. (9), the denominator can be viewed as
a determinant of the weighted geometric mean of the class covari-
ance matrices. Thus, the difference between LDA and HDA is the
definitions of the mean of the class covariance matrices.

3.2. Power Linear Discriminant Analysis

As described above, Eqs. (8) and (9) give us a new integrated in-
terpretation of LDA and HDA. As extension of this interpretation,
their denominators can be replaced by a determinant of the weighted
harmonic mean, or a determinant of the root mean square.

In the econometric literature, a more general definition of a mean
is often used, called the weighted mean of order m [9]. We extend
this notion to a determinant of a matrix mean and propose a new
objective function as follows:

JPLDA (B, m) =

˛̨̨
Σ̃b

˛̨̨
˛̨̨
˛̨̨ cX

k=1

PkΣ̃
m
k

!1/m
˛̨̨
˛̨̨
, (10)

where m denotes a control parameter. Intuitively, as m becomes
larger, the classes with larger variances become dominant in the de-
nominator of Eq. (10). Contrarily, as m becomes smaller, the classes
with smaller variances become dominant. Thus, varying a parameter
m, the proposed objective function can represent various objective
ones. Some typical objective functions are enumerated below.

• m = 2 (root mean square)

JPLDA (B, 2) =

˛̨̨
Σ̃b

˛̨̨
˛̨̨
˛̨̨ cX

k=1

PkΣ̃
2
k

!1/2
˛̨̨
˛̨̨
.

• m = 1 (arithmetic mean)

JPLDA (B, 1) =

˛̨̨
Σ̃b

˛̨̨
˛̨̨
˛̨ cX
k=1

PkΣ̃k

˛̨̨
˛̨

= JLDA (B) .

• m = 0 (geometric mean)

JPLDA (B, 0) =

˛̨̨
Σ̃b

˛̨̨
˛̨̨
˛̨ cY
k=1

Σ̃
Pk
k

˛̨̨
˛̨
∝ JHDA (B) .

• m = −1 (harmonic mean)

JPLDA (B,−1) =

˛̨̨
Σ̃b

˛̨̨
˛̨̨
˛̨
 

cX
k=1

PkΣ̃
−1
k

!−1 ˛̨̨
˛̨
.

We call this new discriminant analysis formulation Power Linear
Discriminant Analysis (PLDA). Figure 1(c) shows that PLDA can
have a higher separability for the data set with which LDA and HDA
have lower separability. To maximize the PLDA objective func-
tion with respect to B, we can use numerical optimization tech-
niques such as the Nelder-Mead method [10] and SANN method
[11]. These methods need no derivatives of the objective function.
However, it is known that these methods converge slowly. In some
special cases, the derivatives of the objective function are derived.
Hence, we can use some fast convergence methods, such as the
quasi-Newton method and conjugate gradient method [12].

3.2.1. Order m constrained to be an integer

Assuming that a control parameter m is constrained to be an inte-
ger, the derivatives of the PLDA objective function are formulated
as follows:

∂

∂B
log JPLDA (B, m) = 2ΣbBΣ̃−1

b − 2Dm, (11)

where

Dm =

8>>>>>>>>><
>>>>>>>>>:

1

m

cX
k=1

PkΣkB

mX
j=1

Xm,j,k, if m > 0

cX
k=1

PkΣkBΣ̃−1
k , if m = 0

− 1

m

cX
k=1

PkΣkB

|m|X
j=1

Ym,j,k, otherwise

Xm,j,k = Σ̃m−j
k

 
cX

l=1

PlΣ̃
m
l

!−1

Σ̃j−1
k ,

and

Ym,j,k = Σ̃m+j−1
k

 
cX

l=1

PlΣ̃
m
l

!−1

Σ̃−j
k .

3.2.2. Σ̃k constrained to be diagonal

Because of computational simplicity, the covariance matrix in the
class k is often assumed to be diagonal [7,8]. Since a diagonal matrix
multiplication is commutative, the derivatives of the PLDA objective
function are simplified as follows:

∂

∂B
log JPLDA (B, m) = 2ΣbBΣ̃−1

b

− 2

 
cX

k=1

PkΣkBdiag
“
Σ̃k

”m−1
! 

cX
k=1

Pkdiag
“
Σ̃k

”m
!−1

,

(12)

where diag is an operator which sets zero to off-diagonal elements.
When m is equal to zero, the PLDA objective function corre-

sponds to the diagonal HDA (DHDA) objective function introduced
in [8]. When m is equal to one, the PLDA objective function can
be viewed as a diagonal LDA (DLDA) similar to DHDA. Note that
DLDA no longer has the global optimum unlike LDA.

4. EXPERIMENTS

We conducted the experiments using the CENSREC-3 database [13].
The CENSREC-3 is designed as an evaluation framework of Japanese
isolated word recognition in real driving car environments. Speech
data was collected using 2 microphones, a close-talking (CT) mi-
crophone and a hands-free (HF) microphone. For training, driver’s
speech of phonetically-balanced sentences was recorded under two
conditions: while idling and driving on a city street with normal
in-car environment. A total of 14,050 utterances spoken by 293
drivers (202 males and 91 females) were recorded with both mi-
crophones. We used all utterances recorded with CT and HF mi-
crophones for training. For evaluation, driver’s speech of isolated
words was recorded under 16 environmental conditions using com-
binations of three kinds of vehicle speeds and six kinds of in-car
environments. We only used three kinds of vehicle speeds in normal
in-car environment for evaluation. A total of 2,646 utterances spoken
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by 18 speakers (8 males and 10 females) were evaluated for each mi-
crophone. The speech signals for training and evaluation were both
sampled at 16 kHz.

4.1. Baseline System

In the CENSREC-3, the baseline scripts are designed to facilitate
HMM training and evaluation by HTK [14]. The acoustic mod-
els consisted of triphone HMMs. Each HMM had five states and
three of them had output distributions. Each distribution was rep-
resented with 32 mixture diagonal Gaussians. The total number of
states with the distributions were 2,000. The feature vector consisted
of 12 MFCCs and log-energy with their corresponding delta and ac-
celeration coefficients (39 dimensions). Frame length was 20-msec
and frame shift was 10-msec. In the Mel-filter bank analysis, a cut-
off was applied to frequency components lower than 250Hz. The
decoding process was performed without any language model. The
vocabulary size of the CENSREC-3 was 50 words. Fifty similar-
sounding out-of-vocabulary words were added for the experiments.

4.2. Dimensionality Reduction Procedure

The dimensionality reduction was performed using PCA, (D)LDA,
(D)HDA, and PLDA for the spliced features. Eleven successive
frames (143 dimensions) were reduced to 39 dimensions. In HDA
and PLDA, to optimize Eq. (10), we used the limited-memory BFGS
algorithm as a numerical optimization technique [12]. Assuming
that projected covariance matrices were diagonal, Eq. (12) was used
to compute a gradient. The LDA transformation matrix was used for
the initial gradient. To assign one of the classes to every feature af-
ter dimensionality reduction, HMM state labels were generated for
the training data by state-level forced alignment algorithm using a
well-trained HMM system. The class number was 43 corresponding
to the number of the monophones.

Table 1. Word error rates (%) by PLDA and conventional methods.

Method m CT HF Overall

MFCC + Δ +ΔΔ − 7.45 15.04 11.24

PCA − 10.58 19.39 14.98

LDA − 8.78 15.80 12.28

HDA − 7.94 17.16 12.55

PLDA −3.0 6.73 15.04 10.88

PLDA −2.0 7.29 12.32 9.81

PLDA −1.5 6.27 10.70 8.48
PLDA −1.0 6.92 11.49 9.20

PLDA −0.5 6.12 12.51 9.32

DHDA (0.0) 7.41 14.17 10.79

PLDA 0.5 7.29 13.53 10.41

DLDA (1.0) 9.33 16.97 13.15

PLDA 1.5 8.96 17.31 13.13

PLDA 2.0 8.58 15.91 12.24

PLDA 3.0 9.41 16.36 12.89

4.3. Experimental Results

For the evaluation data recorded with a CT microphone, Table 1
shows that PLDA with m =−0.5 yields the lowest WER. For the
evaluation data recorded with a HF microphone, the lowest WER is
obtained by PLDA with a different control parameter (m =−1.5).
Thus, these two data sets recorded with different microphones have
different optimal control parameters. PLDA with the optimal control
parameters consistently outperform the other methods.

5. CONCLUSIONS

In this paper we propose a new framework for integrating various
criteria to reduce dimensionality. The new framework which we
call power linear discriminant analysis (PLDA) includes LDA and
Saon’s HDA criteria as special cases. The experimental results on
the CENSREC-3 database show that segmental unit input HMM
with PLDA gives better performance than the others. Future work
includes choosing the parameter m automatically to get optimal per-
formance, combining PLDA with MLLT [15], and comparing PLDA+
MLLT with both LDA+MLLT and HDA+MLLT.
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