
A CONSTRAINED LINE SEARCH OPTIMIZATION FOR
DISCRIMINATIVE TRAINING IN SPEECH RECOGNITION

Cong Liu1, Peng Liu2, Hui Jiang3, Frank Soong2, Ren-Hua Wang1

1University of Science and Technology of China, Hefei, P. R. China, 230027
2Microsoft Research Asia, Beijing, P. R. China, 100080

3Department of Computer Science and Engineering, York University, CANADA
Email: yylhbt@mail.ustc.edu.cn pengliu@microsoft.com

hj@cse.yorku.ca frankkps@microsoft.com rhw@ustc.edu.cn

ABSTRACT

In this paper, we propose a novel constrained line search to optimize
the MMIE objective function for training discriminative HMMs. In
our method, the MMI estimation is cast as a constrained maximiza-
tion problem, where Kullback-Leibler divergence between models
before and after parameters adjustment is introduced as a constraint
during optimization. Then, based on the idea of line search, we show
that a simple, closed-form solution can be derived under some ap-
proximation assumptions. The proposed optimization method have
been investigated in two speech recognition tasks: TIDIGITS and
Switchboard (mini-train). Experimental results show that the new
training method achieves significant word error rate reduction when
comparing with our best MLE models, i.e., relatively 63.8% on TIDIG-
ITS and 6.1% on the Switchboard mini-train set, respectively. Our
results also show that the constrained line search method consis-
tently outperforms the popular EBW method in both tasks.

Index Terms— Discriminative training, Maximum mutual in-
formation (MMI), Line search, Kullback-Leibler divergence

1. INTRODUCTION

In the past few decades, discriminative training (DT) has been a
very active research topic in the field of speech recognition. Many
different discriminative training methods have been proposed to es-
timate Gaussian mixture continuous density hidden Markov model
(CDHMM) in a variety of speech recognition tasks. Estimation of
CDHMM parameters is essentially an optimization problem. First
of all, we formulate an objective function according to certain esti-
mation criterion, such as maximum mutual information (MMI)[1],
minimum classification error (MCE)[2, 3, 4] , minimum word or
phone error (MWE or MPE) [5] and minimum divergence (MD)[6].
Secondly, once the objective function is formulated, an effective op-
timization method must be used to minimize or maximize the ob-
jective function w.r.t. all CDHMM parameters. In speech recog-
nition, several different methods have been used to optimize the
derived objective function, including GPD (generalized probabilis-
tic descent) algorithm based on first-order gradient descent, the ap-
proximate second-order Quickprop method, extended Baum-Welch
(EBW) algorithm based on growth transformation and so on. Es-
sentially, all of these optimization methods attempt to search for a
nearby local optimal point of the objective function from an initial

1This work has been done when the first author was a visiting student with
Speech Group, Microsoft Research Asia.

point according to both a search direction, which is computed based
on the first-order derivative (such as gradient), and a step size which
is empirically determined in practice. As the result, performance
of these optimization methods highly depends on the initial point
and property of the objective function. If the derived objective func-
tion is highly nonlinear, jagged and non-convex in nature, just like
in discriminative training of CDHMMs, it is extremely difficult to
optimize it effectively with any simple optimization algorithm.

In this paper, we propose a novel optimization method, called
constrained line search, to optimize this kind of complicated ob-
jective function of Gaussian mixture CDHMMs derived based on
the MMI criterion in speech recognition. Firstly, we cast the MMI
estimation of CDHMM’s as a constrained maximization problem.
Under this constraint, the MMI objective function can be approxi-
mated by a smoothing quadratic function for each Gaussian means
or such like for variances, and the sole optimal point of this func-
tion can be easily obtained by vanishing its derivative to zero. Based
on this, a closed-form solution to the above constrained maximiza-
tion for MMIE can be easily derived by a constrained line search
method. The proposed line search optimization method for MMIE
has been investigated for several speech recognition tasks, includ-
ing connected digit string recognition using TIDIGITS database and
large vocabulary recognition using the Switchboard mini-train data
set. The experimental results clearly show that the proposed line
search method outperforms the popular EBW method in both evalu-
ated ASR tasks.

2. A CONSTRAINED OPTIMIZATION FOR MMIE

Assume we have R training utterances X1, X2, · · · , XR along with
their corresponding transcriptions W1, W2, · · · , WR. As we know,
the objective function of MMIE takes the following form:

FMMI(Λ | {Xr, Wr,Mr}R
r=1, κ)

=
1

R

RX
r=1

log

"
pκ(Xr|λWr ) · p(Wr)P

W∈Mr
pκ(Xr|λW ) · p(W )

#
(1)

where Λ denotes the set of all CDHMMs, and Mr stands for all
competing hypotheses of utterance Xr , and λWr denotes compos-
ite HMM model for word sequence Wr , and κ (0 < κ ≤ 1) is
the so-called acoustic scaling factor. Usually Mr is approximately
represented by word lattice generated from Viterbi decoding of the
utterance Xr .
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Furthermore, we assume that the model set Λ is composed of
many individual Gaussian mixture CDHMMs, each of which is rep-
resented as λ = (π, A, θ), where π is initial state distribution, A =
{aij | 1 ≤ i, j ≤ N} is transition matrix, and θ is parameter vector
composed of mixture parameters θi = {ωik, μik, σik}k=1,2,··· ,K

for each state i, where K stands for the number of Gaussian mix-
tures in each state. Then, the state observation p.d.f. is assumed
to be a mixture of multivariate Gaussian distribution with diagonal
covariance matrix:

p(x|θi) =

KX
k=1

ωik · N (x; μik, σik)

=

KX
k=1

ωik

DY
d=1

s
1

2πσ2
ikd

e
− (xd−μikd)2

2σ2
ikd (2)

where D is dimension of observation vector x.
In this study, we assume that language model score p(W ) is

fixed. For any training utterance X and its transcription W , let’s
consider how to compute acoustic model score p(X|λW ) in the
MMIE objective function in eq.(1) based on the composite HMM
λW of W . Suppose X = {x1,x2, · · · ,xT }, let s = {s1, s2, · · · , sT }
be the unobserved state sequence, and l = {l1, l2, · · · , lT } be the
associated sequence of the unobserved mixture component labels.
Thus, p(X|λW ) is computed as:

p(X|λW ) =
X
s

X
l

(
πs1ωs1l1N (x1; μs1l1 , σs1l1)

RY
t=2

ast−1st · ωstlt · N (xt; μstlt , σstlt)

)
(3)

where summations are taken over all possible state sequence s and
mixture label l. If we adopt the Viterbi method to approximate the
above summation with the single optimal Viterbi path, denoted as
s∗ = {s∗1, s∗2, · · · , s∗T } and l∗ = {l∗1 , l∗2 , · · · , l∗T }, then we have

p(X|λW ) ≈ πs∗1ωs∗1 l∗1N (x1; μs∗1 l∗1 , σs∗1 l∗1 )

RY
t=2

as∗t−1s∗t · ωs∗t l∗t · N (xt; μs∗t l∗t , σs∗t l∗t ) (4)

After substituting eq.(3) or eq.(4) into eq.(1), we can see that
the MMI objective function FMMI becomes a highly nonlinear com-
plicated function, which is extremely difficult to optimize directly.
Thus, we first make the following assumptions: i) assume that all
competing hypothesis spaces Mr are unchanged during optimiza-
tion; ii) introduce a small scaling factor κ (κ � 1) to smooth the
original MMI objective function. Because of this, it is clear that we
should explicitly add the constraint that the HMM model parameters
Λ can not significantly differ from their initial values Λ0, which is
used to generate word lattices {Mr} and to approximate p(X|λW )
in eq.(4), to ensure that all of these assumptions still remain valid
during optimization. Obviously, this kind of constraint can be quan-
titively formulated based on Kullback-Leibler divergence (KLD) be-
tween models. Therefore, the MMI training problem of CDHMMs
should be formulated as the following constrained maximization prob-
lem:

max
Λ

FMMI(Λ | {Xr, Wr,Mr}R
r=1, κ) (5)

subject to D(Λ||Λ(0)) ≤ ρ2, (6)

where D(Λ||Λ(0)) means KL divergence calculated between the

model set Λ and its initial value Λ(0), and ρ2 is a pre-set constant to
control the search range.

As we will show later, if the smoothing factor κ is sufficiently
small, i.e., κ � 1, under the constraint in eq.(6) the MMI objec-
tive function can be approximated as a quadratic function so that a
closed-form solution (at least sub-optimal) can be derived for the
constrained optimization problem in eqs.(5) and (6).

3. MODEL CONSTRAINTS BASED ON KL DIVERGENCE

Assume the model set Λ is composed of many individual models λ
(λ ∈ Λ), the KLD constraint in eq.(6) can be equivalently repre-
sented for each model as:

D(λ || λ(0)) ≤ ρ2 (λ ∈ Λ) (7)

Furthermore, D(λ || λ(0)) can be decomposed according to all
Gaussian components:

D(λ || λ(0)) ≤
NX

i=1

D(θi || θ
(0)
i )

=

NX
i=1

KX
k=1

ωik · D(N (μik, σik) || N (μ
(0)
ik , σ

(0)
ik )) (8)

It is well known that KL-divergence between two Gaussians can
be explicitly computed as:

D(N (μik, σik) || N (μ
(0)
ik , σ

(0)
ik ))

=
1

2

DX
d=1

"
log

(σ
(0)
ikd)2

σ2
ikd

− 1 +
σ2

ikd

(σ
(0)
ikd)2

+
(μikd − μ

(0)
ikd)2

(σ
(0)
ikd)2

#
(9)

Furthermore, we decompose the KLD constraint in eq.(9) for
Gaussian means μik and variances σik separately as follows:

DX
d=1

(μikd − μ
(0)
ikd)2

(σ
(0)
ikd)2

≤ ρ2
1 (for all λ ∈ Λ and i, k) (10)

DX
d=1

"
log

(σ
(0)
ikd)2

σ2
ikd

− 1 +
σ2

ikd

(σ
(0)
ikd)2

#
≤ ρ2

2 (for all λ ∈ Λ and i, k)

(11)
where ρ2

1 and ρ2
2 are two pre-set constants to control constraint range

for mean vectors and variance vectors, respectively.

4. CONSTRAINED LINE SEARCH OPTIMIZATION

Now let’s consider how to maximize the MMI objective function
FMMI under the constraints in eqs.(10) and (11). First of all, we
consider the first-order derivative of FMMI with respect to a Gaus-
sian mean vector μik as follows:

∂FMMI

∂μik
=

1

R

RX
r=1

TX
t=1

h
γnum

ik (r, t) − γden
ik (r, t)

i
· cik(r, t)

· ∂

∂μik
log [ωikN (xrt; μik, σik)]

=
1

R

RX
r=1

TX
t=1

h
γnum

ik (r, t) − γden
ik (r, t)

i
· cik(r, t) · (xrt − μik)

σ2
ik

(12)
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where γnum
ik (r, t) and γden

ik (r, t) are occupancy probability of
r-th training data Xr at time t for Gaussian k of state i collected
based on numerator lattice and denominator lattice respectively, and
cik(r, t) denotes occupancy probability for k-th Gaussian in state i:

cik(r, t) =
ωik · N (xrt; μik, σik)PK
l=1 ωsl · N (xrt; μik, σil)

. (13)

Obviously, γnum
ik (r, t), γden

ik (r, t) and cik(r, t) are all functions
of model parameter Λ. However, if the scaling factor κ is suffi-
ciently small and the model parameter Λ is limited by the constraint
eq.(6), they are all actually slowly-changing w.r.t. Λ and can be
approximately considered as constants w.r.t Λ. Then, under these
conditions, from eq.(12) we can see that FMMI is approximately a
quadratic function of μik. Its sole optimal point μ̂ik can be easily
computed by vanishing its derivative to zero ∂FMMI

∂μik
= 0 as:

μ̂ik =

PR
r=1

PT
t=1

ˆ
γnum

ik (r, t) − γden
ik (r, t)

˜ · cik(r,t)

σ2
ik

· xrtPR
r=1

PT
t=1

ˆ
γnum

ik (r, t) − γden
ik (r, t)

˜ · cik(r,t)

σ2
ik

(14)

However, since the MMI objective function FMMI is indefinite,
the above optimal point may be maximum for some μik but mini-
mum for others, as shown in Figure 1. In total, we have four possi-
ble situations: i) μ̂ik is maximum and it is located within constraint
range, as in case 1; ii) μ̂ik is maximum but it is outside constraint
range, as in case 2; iii) μ̂ik is minimum, as in case 3; iv) FMMI

degenerates to a linear function when γnum
ik (r, t) = γden

ik (r, t), no
optimal exists as shown in case 4. Among these cases, even when
μ̂ik is indeed a maximum, it may not be a good solution to eqs.(5)
and (6) since it may be very far from the initial point so that the
constraint in eq.(6) is not satisfied, as in case 2.

Therefore, in this paper, for the objective function FMMI whose
optimal point can be obtained (case 1, 2, 3), we propose to conduct

a constrained line search along the line joining the initial μ
(0)
ik and

the optimal μ̂ik to search for an optimal point which maximizes the
objective function FMMI subject to the constraint in eq.(10):

μ∗
ik = (1 − εik) · μ(0)

ik + εik · μ̂ik (−∞ < εik < ∞) (15)

where εik is a linear interpolation weight, which is determined by
maximizing FMMI w.r.t. μik under the constraint eq.(10). Due to the
simple format of constraint eq.(10), εik can be easily computed for
all of these three different cases. After defining the KL divergence

for mean vectors in eq.(10) as D(μik||μ(0)
ik ) =

PD
d=1

(μikd−μ
(0)
ikd

)2

(σ
(0)
ikd

)2
,

the general form to compute εik for eq.(15) is given as follows, for
the above different cases:

εik =

8>>>><
>>>>:

1 if case 1r
ρ2
1

D(μ̂ik||μ(0)
ik

)
if case 2

−
r

ρ2
1

D(μ̂ik||μ(0)
ik

)
if case 3

(16)

For the linear case in which no optimal point exists (case 4),
we need to employ the gradient ∇FMMI as the direction of search
instead of that of line search, which can be expressed as follows:

μ∗
ik = μ

(0)
ik + εik · ∇FMMI(μ

(0)
ik ) (0 < εik < ∞) (17)

Fig. 1. Illustration of Constrained Line Search for maximizing the
objective function in several cases.

after substituting eq.(17) into eq.(10), the interpolation weight εik

for linear case can be obtained as follows:

εik =

vuut ρ2
1PD

d=1

h
∇FMMI(μ

(0)
ikd)/(σ

(0)
ikd)2

i if case 4 (18)

Similarly, other model parameters, such as Gaussian variances,
mixture weights, etc., can be optimized following the same idea of
constrained line search. Due to space limit, we have to leave out all
formula for updating other HMM parameters in this paper.

In summary, during the proposed MMIE training process, we
first generate word-lattices for all training data based on an initial
model. Then all statistics are collected from these word-lattice based
on the initial model and all Gaussian means in the model set are
updated according to eq.(15). Next, we can re-collect statistics based
on the updated model and update models again until it converges.
In this work, for simplicity, we only update Gaussian means in the
MMIE training with the proposed constrained line search method.
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Fig. 2. Comparison of word error rates (in %) of different optimiza-
tion methods on the TIDIGITS test set.

5. EXPERIMENTS

The proposed constrained line search optimization method for the
MMIE training has been evaluated on two speech recognition tasks:
connected digit string recognition by uisng the TIDIGITS database
and large vocabulary speech recognition task by using the Switch-
board mini-train data set. In TIDIGITS, 39-dimensional MFCCs
(12-d static MFCC, log-energy, delta and acceleration coefficients)
are used to train 10-state whole-word based models, with 6 mixtures
per state. And there are 12,549 utterances in the training set and
12,547 utterances in the testing set. In Switchboard mini-train task,
39-dimensional PLPs are used to train context dependent tri-phone
HMM, with 12 mixtures per state. The training set has totally 18,252
utterances, and we use Switchboard eval2000 data set (1,831 utter-
ances) as the test set.

In our experiments, we always use the best ML-trained HMMs
as the seed model for the MMIE training on both databases. The
MMIE training is conducted by using two different optimization
methods, namely the popular EBW method and the proposed con-
strained line search method. Please note that we update all Gaussian
means, variances and mixture weights in the EBW method while we
update only Gaussian means in the proposed constrained line search
method. For the EBW method, the results by using the method in
[5] to determine the constant D (E = 2) in each iteration are rep-
resented. In the constrained line search method, the constant ρ2 to
control search range is decreased with iterations to make training
more stable and convergence faster.

In Fig.2, we give a performance comparison between the pro-
posed line search method and the popular EBW method on the test
set of TIDIGITS. The results clearly show that the proposed method
achieves larger improvement than the EBW method. In the con-
strained line search, the word error rate decreases from 1.16% to
0.42%, which indicates 63.8% relative error reduction, from the best
MLE-trained models. The learning curves in Fig.2 show that the
constrained line search method converges pretty well.

In Fig.3, we also give the word error performance comparison
on Switchboard eval2000 data set by using different optimization
methods for the MMIE training. It shows that the proposed line
search method also outperforms the EBW method. For the con-
strained line search, the word error rate decreases from 40.8% to
38.3%, or a 6.1% relative error reduction in comparing with our best
MLE-trained model.
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Fig. 3. Comparison of word error rates (in %) of different optimiza-
tion methods on the Switchboard eval2000 test set.

6. CONCLUSIONS AND FUTURE WORK

In this paper, a new constrained line search method is proposed to
optimize the MMIE objective function for discriminative training.
Experimental results show that our method consistently achieves bet-
ter performance than the popular EBW method in two speech recog-
nition tasks.

In this work, we only update means for simplicity. More exper-
iments to update other HMM parameters with the same line search
idea are underway. Furthermore, the same line search idea can also
be applied to other discriminative training criteria, such as MCE,
MPE, MD, etc. These works will be reported in the future.
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