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ABSTRACT

The main goal of this paper is to investigate the feasibility of ex-
ploiting the invariance properties associated with articulatory based
acoustic features to reduce ambiguity in ASR search. A multivalued
phonological feature set de ned by King and Taylor is used along
with a time delay neural network implementation of phonological
feature detectors to produce eight independent phonological feature
streams [1]. Hidden Markov models (HMMs) de ned over these
phonological feature streams are combined with HMMs de ned over
spectral energy based mel frequency cepstrum coef cient (MFCC)
acoustic features through a lattice re-scoring procedure. It is shown
that signi cant improvements in phone recognition accuracy are ob-
tained for this combined system relative to phone accuracy obtained
for MFCC based HMMs alone. A study is also performed to analyze
the effects of uncertainty in phonological feature detection.

Index Terms— Speech Recognition, Acoustic Modeling,
Phonological Features

1. INTRODUCTION

The notion of an acoustic event detection and evidence combina-
tion paradigm for automatic speech recognition has been pursued
by many researchers [2, 3, 4, 5]. In the most general scenario for
this framework, multiple phonological feature detectors would gen-
erate a posteriori probabilities for every possible feature and these
many asynchronous events would be integrated with other lexical
and linguistic knowledge sources to obtain a decoded result. This is
a compelling paradigm for ASR which has been dominated for many
years by systems relying on statistical models de ned over spectral
energy based observations. This paper, however, is concerned with
the more modest goal of exploiting this additional acoustic evidence
for reducing ambiguity in existing ASR decoders and developing an
understanding of the level of useful information that can be derived
from features that are more closely associated with speech produc-
tion. A lattice re-scoring approach for integrating phonological fea-
tures obtained from a set of neural network based feature classi ers
with a MFCC based ASR decoder is presented.

The idea that phonological or distinctive features may exhibit
less overall variability than spectral energy based features derived
directly from the acoustic waveform has been motivated primar-
ily by their association with articulatory events in speech produc-
tion [1, 6, 7]. An articulatory event that is considered “critical”
to the production of a particular phoneme exhibits less variability
during the production of that phoneme than non-critical articulatory
events [6]. The use of phonological features has the potential to
exploit this phenomenon of articulatory invariance. There are, of
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course, many challenges. These include the dif culty of obtaining
reliable estimates of phonological features that serve as observations
in this articulatory space. Challenges also include de ning phono-
logical features whose statistical properties can be ef ciently mod-
eled and incorporated with other knowledge sources in ASR search.

Many researchers have investigated practical means for exploit-
ing phonological distinctive features and articulatory knowledge in
general for ASR. This includes the use of neural networks to pre-
dict phonological features for MFCC observations [4, 1], the use of
HMM’s to model articulatory phenomena [8], and the use of HMM’s
de ned directly over phonological features [5, 3]. Niyogi and
Ramesh investigated a framework where the events corresponded to
acoustic distinctive features [2]. This involved separate detectors for
each distinctive feature category and a mechanism for merging the
evidence obtained from the distinctive feature detectors with N-best
string candidates produced by a HMM based continuous speech rec-
ognizer. While only a single distinctive feature detector, voice onset
time, was implemented in this scenario, it was shown to have the po-
tential for reducing uncertainty in traditional ASR search by disam-
biguating very speci c acoustic confusions. Li et al also investigated
the use of phonological features for re-scoring n-best lists generated
from an MFCC based ASR system [4].

The main goal of this paper is to investigate whether the invari-
ance properties that are generally attributed to phonological features
can really be exploited to reduce ambiguity in ASR search. A simple
generative model is presented in Section 2 where the acoustic speech
waveform is assumed to be generated from a word sequence both in-
directly through independent streams of phonological features and
directly as a sequence of MFCC observations. Phonological features
are generated by time delay neural network based feature detectors
following the approach of King and Taylor [1]. A system for inte-
grating these phonological feature streams with MFCC based ASR
according to the generative model of Section 2 is described in Sec-
tion 3. Section 4 presents ASR results obtained for this approach and
discussion of the relationship of this approach to other feature based
approaches is provided in Section 5.

2. MODEL FOR FEATURE INTEGRATION

This section describes a simple model for decoding an optimum
phone string from a sequence of independent phonological feature
vectors. The model is used to motivate the lattice re-scoring based
feature integration strategy described in Section 3. A generative
model for speech recognition is assumed where a phone string, F ,
generates a continually varying sequence of articulatory states. It is
assumed that these articulatory states give rise to a set of N phono-
logical feature streams,Xi, i = 1, . . . , N . Each feature stream con-
sists of a sequence of vectors, Xi = {�xi

1, . . . , �x
i
T } that are updated

at xed 10 msec. time intervals. The de nition of the phonologi-
cal classes that each feature, �xi, represents is given in Section 3.1.
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A surface acoustic waveform, S, is generated from the sequence of
articulatory states. An additional observation stream, X0, is also
de ned to represent spectral energy based MFCC features resulting
in a total of N + 1 feature streams. The problem of decoding the
optimum phone sequence, F̂ , corresponds to optimizing

F̂ = argmax
F

{p(F |X0, ..., XN , S)} (1)

= argmax
F

{p(F,X0, ..., XN , S)}
= argmax

F
{p(S|X0, ..., XN , F )p(X0, ..., XN , F )}

= argmax
F

{p(S|X0, ..., XN )

p(X0|F ), ..., p(XN |F )p(F )} (2)

Equation 2 was obtained by assuming that the feature streams are
conditionally independent given a phone sequence and the acoustic
waveform, S, is not directly dependent on F . Each of the proba-
bilities p(Xi|F ) represents the probability of the ith phonological
feature stream for a given phone string. This is represented here
by an acoustic HMM. While there are many different possibilities
for integrating multiple feature streams, the initial model used here
assumes that the phonological feature streams are simply concate-
nated. As a result, there are two HMMs. The rst is de ned over
the MFCC observations, X0, and the second is de ned over eight
concatenated observation streams, X1, ..., X8 to be de ned in Sec-
tion 3.1. The probability, p(F ), represents the prior probability of
generating the phoneme string. This is represented by a phone based
bigram language model that will be used to constrain search within
the MFCC based ASR system.

The probability, p(S|X1, ..., XN ), in Equation 2 represents the
probability of the acoustic waveform being generated from N fea-
ture streams. This provides a measure of the uncertainty associated
with the estimation of the phonological feature vectors from speech.
If X1, ..., XN are assumed to be independent, then

p(S|X1, ..., XN ) =

NY

i=1

p(Xi|S)/p(Xi)p(S). (3)

Each term, p(Xi|S)/p(Xi), on the right side of Equation 3 corre-
sponds to the posterior probability of feature stream i normalized by
the prior for that stream. The probability of the MFCC observation
stream, p(X0|S), can also be included in Equation 3. Non-trivial
probability densities for spectral energy based observation vectors
can be of particular interest in missing feature theory where mod-
els for noise corruption of spectral bands are incorporated directly
into the observation distributions. However, it is assumed here to be
uniformly distributed.

3. INTEGRATION BY LATTICE RE-SCORING

This section describes a system for integrating MFCC based and
acoustic phonetic based features in a phone recognition task under
the general modeling assumptions given in Section 2. It is made up
of three parts. First, the phonological features used in the system are
described. A set of neural network based classi ers that are used for
computing the posterior probabilities given in Equation 3 are pre-
sented. Second, the use of HMM acoustic models for representing
the likelihood for both spectral energy (MFCC) based features and
the concatenated set of phonological features is discussed. Finally,
the mechanism for integrating these features by re-scoring ASR lat-
tices is described.

3.1. Phonological Features

The phonological features used here correspond to the multi-valued
feature system used by King and Taylor [1]. Table 2 lists the eight
features along with the possible values that can be assumed by each
feature. Each of the eight features is modeled by a single layer time
delay neural network (TDNN). The input to each network is a vector
of twelve MFCC’s along with their rst and second differences. The
outputs of each feature based TDNN correspond to the binary values
given in Table 2. The NICO toolkit was used for all of the networks
and back propagation training of all network parameters [9]. Neural
network based classi ers for these features are used to generate the
posterior probabilities given in Equation 3.

Phonological Feature De nition
Feature Class Values
centrality central, full, undef.
continuant continuant, non-continuant
front-back back, front
manner vowel, fricative, approximant, nasal
phonation voiced, unvoiced
place low, mid, high,

palatal, corono-dental, labio-dental,
labial, coronal, velar, glottal,

roundness round, not-round
tenseness lax, tense

Table 1. De nition of eight phonological features proposed by King
and Taylor and the discrete values assumed by each feature [1].

3.2. HMM Models

Continuous diagonal mixture Gaussian observation density HMM
models were used to build phoneme recognizers based on both
MFCC observations and feature based observations. The MFCC
based ASR system was based on thirteen component cepstrum vec-
tors concatenated with the rst and second difference cepstrum to
obtain 39 dimensional observation vectors. A single phonological
feature based ASR system was created using the estimates of the
posterior probabilities obtained from the outputs of the feature based
TDNNs described in Section 3.1.

There are several problems associated with using diagonal Gaus-
sian HMMs to model observation vectors that are de ned this way. A
rst problem is that the individual outputs are also potentially highly

correlated. A second problem is dimensionality. There are 28 to-
tal components corresponding to the output values given in Table 1,
resulting in an observation vector dimensionality of 84 when con-
catenated with rst and second order difference vectors. Principal
components analysis (PCA) was used to reduce the degree of corre-
lation and to reduce the dimensionality of the phonological feature
based observation vectors. The outputs of the 8 phonological feature
TDNNs were concatenated to form a 28 dimensional vector. The
covariance of the data was diagonalized using PCA, and the rst
13 principle components were retained. This was then concatenated
with rst and second difference cepstrum to obtain a 39 component
observation vector.

Both maximum likelihood and maximum mutual information
training criteria were applied to training MFCC based and phonolog-
ical feature based HMMs. It was originally thought that MMI train-
ing might hold a particular advantage for the phonological feature
based observations due to the potential mismatch of these features to
the structure of the HMMs. It will be shown in Section 4 that, while
MMI training was able to improve performance for both systems
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when only a small number of mixtures were used, a ve mixture per
state ML based system outperformed the equivalent MMI based sys-
tem. As a result, all of the experiments described in Section 4 are
based on ML trained HMMs. The prior phoneme probability, P (F ),
was represented by a phone based bigram model estimated from the
TIMIT training utterances.

3.3. Combining Models

The integration of MFCC and phonological feature based observa-
tions is performed by re-scoring lattices generated by the MFCC
based HMM phone recognizer. This scenario provides the oppor-
tunity to observe the extent to which phonological feature based ob-
servations can be used to disambiguate errors in hypotheses gener-
ated by the more standard MFCC based ASR systems. The optimum
phone string, F̂ , is obtained by optimizing the following score:

S = λ1 log p(X
1, ..., X8|F ) + λ2 log p(X

0|F ) + λ3 log p(F )

+λ4

8X

i=1

log
p(Xi|S)
p(Xi)

, (4)

which is the log-linear combination of probabilities given in Equa-
tions 2 and 3. The rst term in the Equation 4 corresponds to
the acoustic log probability obtained from the HMM de ned over
the concatenated phonological feature based observations. The sec-
ond term corresponds to the HMM log probability from the MFCC
based HMM. The third term corresponds to the phonotactic language
model. Finally, the last term in Equation 4 is derived from the TDNN
based phonological feature detectors.

Each string hypothesis contained in the phone lattices produced
by the MFCC based HMM has log probability λ2 log p(X0|F ) +
λ3 log p(F ). These lattices are then re-scored using the
phonological feature based HMM model to create a new lat-
tice that incorporates the phonological feature log probabili-
ties log p(X1, ..., X8|F ). Finally, to incorporate the uncer-
tainty associated with estimated phonological features, the arcs of
these lattices are re-scored with the estimated log probabilities,
log p(Xi|S)/p(Xi). The estimated posterior probability, p(Xi|S),
for each feature in Table 1 is obtained as the product of the esti-
mated posterior probabilities that appear as the output values for the
feature speci c TDNN. The estimate of the prior probability, p(Xi),
is obtained simply from the relative frequency of the feature occur-
rence in the training corpus. All phone recognition results reported
in Section 4 are obtained by ordering hypotheses using the scoring
function in Equation 4.

4. EXPERIMENTAL STUDY

This section describes the experimental study performed to evaluate
the lattice re-scoring approach to phonological feature integration
described in Section 3. The Section consists of three parts. First,
baseline ASR performance is presented on separate feature sets over
a range of HMM model complexities and different model training
criterion. Second, ASR results are presented for systems that op-
timize the criterion presented in Section 3.3 through a process of
lattice re-scoring. The section concludes with a discussion of how
improvements in the ability to detect phonological features may im-
pact overall system performance in this framework.

4.1. Baseline System

All HMM acoustic models and TDNN based phonological fea-
ture detectors were trained from the TIMIT training utterances. A

small development set was held out for empirical estimation of the
weights, λ1, ..., λ4 in Equation 4. All phone recognition results are
reported on the 1344 utterance TIMIT test corpus. The baseline
phone accuracies (PAC) measured on the TIMIT test set for MFCC
based and phonological feature (FEAT) based HMM ASR systems
are summarized in Table 2. Varying levels of system complexity are
represented in the table ranging from single mixture per state mono-
phone context subword models to ve mixture per state phonetic
context clustered triphone models. The performance of systems con-
gured using HMMs trained from maximum likelihood (ML) and

maximum mutual information (MMI) based training criteria are also
given in Table 2. The baseline phone accuracy (PAC) for a ve mix-
ture per state HMM model de ned over MFCC observation vectors
is shown in the table to be 69.1%. This is below the state of the
art performance obtained for TIMIT, but is reasonable for an HMM
system that has not been optimized for a phone recognition task.

There are several observations that can be made from Table 2.
First, it is clear that the PAC for the best FEAT based ASR system is
below that of the best MFCC system. However, the lower complex-
ity FEAT system obtains far better PAC than the MFCC system with
equivalent model complexity. This suggests that the use of phono-
logical features can potentially provide an advantage over MFCC’s,
but these features are not at all well modeled by mixtures of diagonal
Gaussians. Second, comparing the second and third rows of Table 2,
it is clear that discriminative training of HMM parameters leads to
a small but signi cant improvement in PAC for monophone models.
There is no improvement, however, for triphone models. It appears
that MMI training does have the potential for reducing the effects of
mismatch between the data distribution and model structure in this
context, but there are insuf cient utterances in the TIMIT corpus for
MMI training for all but the simplest HMM models.

Baseline Phone Accuracy (PAC)
Obs. Mono-1Mix Tri-1Mix Tri-5Mix

ML-MFCC 51.7% 63.8% 69.1%
ML-FEAT 59.4% 62.4% 64.1%
MMI-FEAT 60.9% 62.5% 64.5%

Table 2. PAC measured on the TIMIT phone set for ML and MMI
trained HMMs with varying model complexity trained from MFCC
coef cients and phonological feature (FEAT) based observations.

4.2. Combined System Performance

Table 3 displays the phone accuracy for systems implemented us-
ing a lattice re-scoring scenario to optimize the criterion given by
Equation 4. The interpolation weights in Equation 4 are currently
estimated empirically from a small 100 utterance development set.

The PAC in rst row of Table 3 repeats the PAC for the ve
mixture per state context clustered triphone HMM system based on
MFCC observations (M-HMM) shown in the rst row of Table 2.
The PAC displayed in the last row of Table 3 (M-HMM-LatMat)
represents the best alignment of the reference string for each utter-
ance with the phone lattice generated for the utterance. Therefore,
this gure represents the best possible PAC obtainable through re-
scoring of lattices generated by the MFCC based HMM recognizer.

The second row of Table 3 displays the PAC when the lattices
from system M-HMM are re-scored using the FEAT observation
based F-HMM system. A 3.1% absolute improvement in PAC is ob-
tained. This is a signi cant performance improvement relative to the
relative richness of the lattices as characterized by the LatMat per-
formance. The third row of the table displays the performance ob-
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tained when these lattices, after having been re-scored by the FEAT
based HMMs, are then re-scored again to incorporate the probabili-
ties obtained from the phonological feature detectors (D-RESC). No
signi cant increase in performance was obtained using by including
this information. This suggests that posteriors corresponding to fea-
ture detector activations carry little information about the underlying
uncertainty associated with feature detection.

PAC for Lattice Re-scoring
System PAC

M-HMM 69.1%
M-HMM / F-RESC 72.2%
M-HMM / F-RESC / D-RESC 72.2%
M-HMM - LatMat 87.6%

Table 3. Phone accuracy for MFCC based HMM baseline ASR
system (M-HMM), combined system with FEAT based HMM re-
scoring (F-RESC), combined system re-scored with feature detector
scores (D-RESC), and the lattice inclusion rate (LatMat)

5. DISCUSSION

The performance reported in Table 3 for the combined MFCC/FEAT
systems is limited by many issues. A rst limitation is the richness
of the set of the hypothesized phone strings contained in the MFCC-
based ASR lattices. This is characterized by the LatMat performance
in Table 3 which shows that the best possible PAC obtainable by
lattice re-scoring is 87.6%. A second limiting issue is the choice of
the phone rather than, for example, the syllable as the fundamental
acoustic unit for ASR.

A third limitation is the performance of the phonological fea-
ture detectors described in Section 3.1. To gain insight into the
limitations posed by imperfect feature detectors, the combined M-
HMM/F-RESC system in Table 3 was re-run assuming an ideal man-
ner class feature stream. The performance of a TDNN based phono-
logical feature detector is obtained by measuring the accuracy of
the detector in classifying analysis frames against ideal feature la-
bels obtained from human-labeled TIMIT transcriptions. This frame
classi cation accuracy was found to range from 72.8% for the 10
element “place” feature to 92.2% for the 2 element “phonation” fea-
ture. An experiment was performed where the manner feature detec-
tor, which obtained a frame classi cation accuracy of 84.4%, was
replaced by the ideal values taken from the human labeled train-
ing transcriptions. Lattice re-scoring was performed using the ideal
values taken from the test transcriptions. When the F-HMMs were
re-trained and lattice re-scoring was re-run using these ideal man-
ner features, the PAC for the M-HMM/F-RESC system in Table 3
increased from 72.2% to 76.2%. This rather large increase in per-
formance obtained from perfect knowledge of only one of the eight
feature classes suggests that even incremental improvements in fea-
ture detection performance may have a signi cant impact on systems
like the one descibed here.

6. SUMMARY AND CONCLUSIONS

A lattice re-scoring approach for integrating phonological feature
streams obtained from TDNN based feature detectors with an MFCC
based ASR decoder has been presented. An improvement in phone
recognition accuracy of from 69.1% for an MFCC based system to
72.2% for the combined system was obtained on the TIMIT corpus.
There are two major issues that have not been addressed in this work.
A rst issue arises from the fact that performance was strictly mea-
sured according to phone recognition accuracy. This does not allow

for consideration of how incomplete phonological information as-
sociated with a given syllable may have different impact on word
recognition accuracy depending on factors like the stress level asso-
ciated with the syllable [10]. Another issue is that one has to be care-
ful about making broad interpretations based on results measured on
read speech corpora. This is especially true for the TIMIT corpus
which was collected under controlled acoustic conditions and where
human labeled phonetic boundaries are available for training phono-
logical feature detectors. To address this issue, our goal is to extend
this work to spontaneous speech corpora which have been derived
from the conversational telephone speech Switchboard corpus [11].
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