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ABSTRACT

Device, language and environmental mismatch adversely 
affect speaker verification (SV) performance.  We investi-
gate such effects empirically based on the M3 (multi-
biometric, multilingual and multi-device) Corpus [1].  De-
vice mismatch (among 3G phone, PocketPC and a desktop 
PC plug-in microphone) brings relative performance degra-
dation of 523%; language mismatch (between English and 
Cantonese) brings 284% and environmental mismatch (be-
tween office environment and recording studio) brings 
109%.  In particular, verification with wide-band models on 
narrow-band test data outperforms narrow-band models on 
wide-band test data. The 3G phone’s SV performance is 
generally low, but remains stable across environments.  Ad-
ditionally, durational variations within two-second utter-
ances may cause a relative change of 633% in SV perform-
ance. 

Index Terms— Speaker verification, biometrics corpus, 
M3 speaker verification evaluation 

1. INTRODUCTION 

Speaker verification is the process of authenticating the 
speaker’s claimed identity based on his/her input utterances.   
This technology plays a key role in securing computing for 
human-centric computer interfaces.  In real-time applica-
tions, the proliferation of mobile, handheld devices present 
challenges for speaker verification.  For example, mobile 
use means that speaker verification technically needs to 
handle a variety of environmental conditions.  Also, differ-
ent audio input devices (e.g., microphones on PDAs or cell-
phones) may induce significant variations in the quality of 
captured speech.  Some techniques, such as feature mapping 
[2], speaker model synthesis [3] and handset normalization 
[4], have been proposed to alleviate this problem.  The lan-
guage uttered may also affect SV performance, as demon-
strated in our previous work [5].  The length of testing ut-
terance segments is another factor affecting SV perform-
ance.  In particular, it has been shown that the EER of SV 
system is exponentially related to the length of test segment 
[6].  The current study attempts to qualify such effects based 
on SV experiments with the M3 speech data, which contains 

multilingual, multi-device and data for mobile use, as will 
be elaborated later.  

2. THE SPEECH DATA OF M3 CORPUS 

The M3 corpus is designed to support research in multi-
biometric technologies for pervasive computing using mo-
bile devices.  Three kinds of biometrics, three devices, as 
well as three languages, are included in M3. Our research 
focuses on the speech data in M3.  A brief introduction to 
M3 speech data is presented in this section. 

2.1 Speech data collection setup 
During data collection, the multilingual speech data are cap-
tured from multiple devices from two recording conditions:  
an open laboratory and a recording room.  The devices in-
clude a Pocket PC (PPC), a 3G phone and a desktop PC 
plug-in microphone.  Details are listed in Table 1.  The 
speech data across devices are recorded simultaneously.  

Device Configuration Format 
Model: HP iPAQ H2200 series  Pocket PC 

Audio: 22kHz, 16 bits mono wav 
Model: NEC C616  3G phone 

Audio: 8 kHz, 16 bits mono wav 
Config: Pentium 3 996 MHz 512M  

Audio: 16 kHz, 16 bit mono wav 
Desktop PC 

plug-in 
microphone Microphone: Shure BG 1.1 cardioid  

Table 1. Recording devices used in the M3 corpus, together with 
information on system configurations and data formats. 

2.2. Speaker description 
We invited subjects from the college community (age range 
from 20 to 30) to attend the three sessions of M3 data col-
lection, with at least three-week intervals between sessions.  
The subjects speak English as well as Cantonese and/or 
Mandarin.  We have 32 subjects (23 males and 9 females) 
who completed all three sessions. They form the enrolled 
speaker set.  Another 108 subjects are later invited to pro-
vide a single session of data.  They form the independent 
speaker set.

2.3. Utterance design 
We designed a series of text prompts to elicit the subjects’ 
speech utterances that are appropriate for two purposes.  
First, the spoken utterances cover both English and Chinese 
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(Cantonese or Mandarin).  Second, the utterances are re-
corded in short, medium and long forms, while the consis-
tency in the cognitive content is maintained at the same 
time.  The text prompts fall into three categories: (i) The 
general set is frequently used in most applications.  It con-
tains the alphabet, digits and common commands. (ii) A 
domain-specific set based on possible user requests in the 
tourism domain.  (iii) The cognitive set relates to the sub-
ject’s personal profile (e.g. the subject’s horoscope) or opin-
ion (e.g. the subject’s favorite food).

2.4. Speech Data Quality 
In order to gauge the quality of the speech data, the NIST 
SNR tool is used on all speech utterances in M3 corpus.  
Utterances with SNR value below 10dB were discarded.  
On average, the recordings of desktop microphone, PPC, 
and 3G phone have SNR of 30dB, 27dB, and 49dB respec-
tively.  Analysis of the SNR values across the M3 speech 
data reveals that the first session generally has lower speech 
quality than the second and third.  This is because the re-
cording environment of first recording session per subject is 
open laboratory and that of second and third recording ses-
sion is a recording room.1

3. BASELINE SV SYSTEM 

We developed a GMM-UBM SV system [7], which is gen-
erally used in text-independent SV task.  It is used to estab-
lish a preliminary SV benchmark of M3 speech data.   
Speech data acquired with different devices have different 
sampling rates (PPC: 22.05KHz and 3G phone: 8KHz).  
Hence we resampled these data to conform with the sam-
pling rate of desktop PC speech (16KHz).  As silent seg-
ments in the recordings do not carry speaker identity infor-
mation, we used speech activity detection to remove them.  
After silence removal, we use mel-frequency cepstral coef-
ficient (MFCC) as the main feature vector.  19 MFCCs are 
computed for every 10ms using a 25.6ms Hamming win-
dow.  Cepstral mean subtraction (CMS) is applied.  The 19-
dimensional vector is appended with the delta vectors to 
give 38 coefficients in all. 
Two kinds of speaker models are used. They are the tradi-
tional GMM and adapted GMM. The traditional speaker 
GMM is trained using speaker-specific training data with 
the EM algorithm.  Each speaker GMM uses 256 mixtures 
and the universal background model (UBM) uses 2048 mix-
tures.  The adapted speaker model is derived by adapting the 
parameters of the UBM using the speaker’s training speech 
and a form of maximum a posteriori (MAP) estimation [7].  
The adaptation approach is to derive the speaker’s model by 
updating the well-trained parameters in the background 
model via adaptation.  

1 This arrangement was not by design as we had to move our labo-
ratory from one building to another during the recording process.

4. EXPERIMENTAL SETUP 

Under the GMM-UBM framework, the data usage, front-
end processing specific for M3 speech corpus, as well as the 
SV performance measurement is described in the following. 

4.1. Data partition of M3 speech corpus 
We define the data partitioning scheme of M3 as shown in 
Table 2.  Session 2 is used for training and sessions 1 and 3 
for testing respectively.  For each enrolled speaker, there are 
108 true speaker trials.  To keep a gender-balanced number 
of imposter trials, 8 randomly selected male speakers and 8 
female speakers are selected from the 32 speakers in the 
enrolled speaker set (excluding the claimant).   These 16 
speakers, plus 58 speakers (29 males plus 29 females) of the 
independent speaker set, are used to impersonate each 
claimant.  Hence, there are 74 (37 males and 37 females) 
imposters in total.  The speech data of 40 speakers (20 
males and 20 females) in independent speaker set is used to 
train a device-independent universal background model.  
This set of speakers will not be further used as imposters. 

Function Source Description (for each  
speaker ) 

Training data 
(Training device-
dependent speaker 

model) 

Session 2 of enrolled 
speaker set 

English and Cantonese 
(or Mandarin) 

117 utterances (5-7 min-
utes), for training 

speaker model 

Enrolled speaker 
testing data 

Session 1  and session 3 of 
enrolled speaker set for 

environmental matched and 
mismatched respectively 

English and Cantonese 
(or Mandarin) 108 utter-
ances for each speaker 

Imposter testing 
data 

16 speakers in the en-
rolled speaker  set (ran-
dom selected, excluding 
the claimed speaker) and 

58 speakers of inde-
pendent speaker set 

English and Canton-
ese (or Mandarin) 

108 utterances 

UBM training 
data 

40 speakers of the inde-
pendent speaker set 

English and Canton-
ese (108 utterances) 

Table 2 Data partitions in the M3 speech corpus. 

4.2 Performance measure 
The performance of a SV system is usually estimated by 
two kinds of error measures: false acceptance rate (FAR) 
and false rejection rate (FRR).  False acceptance occurs 
when the system incorrectly accepts an impostor, and false 
rejection occurs when the system incorrectly rejects a true 
speaker.  The equal error rate (EER), which is obtained 
when FAR equals FRR, is used for reporting the experimen-
tal results in this work.    

5. EXPERIMENTAL RESULTS AND ANALYSIS 

5.1. Effect of language mismatch on speaker verification 
performance 
We use the PC speech data of 28 speakers who speak Eng-
lish and Cantonese to investigate the effect of language 
mismatch between enrollment and verification on SV per-
formance.  SV experiments on cross-language testing are 
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implemented.  The results are shown in Table 3.  For en-
rollment in English, performance degrades from EER 2.37% 
(with English verification data) to 4.51% (with Cantonese 
verification data), which is a 90% performance degradation.  
For enrollment in Cantonese, performance degrades from 
EER 1.66% (with Cantonese verification data) to 6.37% 
(with English verification data), which is approximately a 3-
fold performance degradation.  It should be noted that the 
English and Cantonese vocabularies are constrained within 
the scope of the prompts, including commands and personal 
profiles.   

Testing languages EER (%) English Cantonese 

English 2.37 4.51 

T
ra

in
in

g
la

ng
ua

ge
s

Cantonese 6.37 1.66 

Table 3. SV performances of language-mismatched enrollment 
and verification cases. 

5.2. Effect of environmental mismatch on speaker verifi-
cation performance 
We implement environmental mismatch SV experiments 
using speaker models trained with Session 2 data (recording 
room).  Testing data include Session 1 (open-lab, i.e., mis-
matched environment) and Session 3 (recording room, i.e., 
matched environment).  The experimental results are shown 
in Figure 1.   
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Figure 1. SV performances under match and mismatched re-
cording environments.  

We can see that environmental mismatch between enroll-
ment and verification degrades SV performance. For the 
desktop speech data, environmental mismatch causes 61% 
degradation (from EER 1.78% to 2.86%).  For the PPC data, 
environmental mismatch causes 109% degradation (from 
EER 1.49% to 3.11%).  For the 3G phone data, environ-
mental mismatch causes 17% degradation (from EER 2.97% 
to 3.48%).  We can see that environmental mismatch is a 
critical factor affecting SV system’s performance, especially 
for the PC and PPC devices.  The insensitivity of the 3G 
phone to environmental mismatch may be due to built-in 
noise cancellation, which makes the 3G phone more robust 
to the environmental variability.  But this noise cancellation 
technique can be a double-edged sword since it may also 
affect the SV performance.  As observed in Figure 1, the 3G 

phone’s SV performance is the worst among the three de-
vices, whether environmental matched or mismatched. 

5.3. Effect of the length of testing utterances 
We investigate the effect of different lengths of testing ut-
terance on SV performance. Recall that M3 speech data 
contains short, medium and long response to each text and 
prompt, e.g., “Apple.” (short); “I like apples.” (medium); 
“Hello computer, my favorite food is apples.” (long).  Re-
spective average durations for short, medium and long ut-
terances are below 1 second, equal to 1 second and 2 sec-
onds in the testing set.  Experimental results (in Figure 2) 
confirm that longer testing utterances give better SV per-
formances.  Short testing segment induces SV performance 
degradation of 633%, 156% and 137% (compared with long 
testing segment) for desktop PC, PPC and 3G phone data 
respectively.   
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Figure 2. SV experimental results on different length of verifi-
cation utterances.

5.4. Effect of device mismatch on SV performance 
M3 speech data is simultaneously recorded using three de-
vices for each speaker and thus support investigates in de-
vice-mismatched SV.  The preliminary device-mismatched 
SV experimental results are shown in Table 4.  Speaker 
models are created by directly applying the EM algorithm to 
speaker’s data or by adapting the UBM using MAP adapta-
tion.  

Verification device (Session 3) Enrollment device 
(Session 2) PC PPC 3G 

PC (EM / MAP) 1.78 /1.66 1.43/1.17 4.68/4.43 
PPC (EM / MAP) 5.50/4.37 1.49/1.52 5.47/4.87 
3G (EM / MAP) 18.51/17.13 5.37/6.53 2.97/3.77 

Table 4. SV performance of device-mismatched enrollment and 
verification cases, expressed in terms of EER (%). 
Each row of Table 4 shows a device-specific speaker model 
tested with both device-matched and device-mismatched 
testing data.  We can see that device-matched SV perform-
ance is better than device-mismatched SV.  For the PC 
model, using 3G testing data causes 162% performances 
degradation (from EER 4.68% to 1.78%).  For the PPC 
model, using PC testing data causes performance degrada-
tion of 72% (from EER 1.49% to 5.50%).  For the 3G phone 
model, using PC testing data causes the most significant 
performance degradation of 523% (from EER 2.97% to 
18.51%).   
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We can also see that verification with wide-band models 
and narrow-band test data outperforms verification with 
narrow-band models and wide-band test data.  For example, 
the EER of PC speaker model (trained with wide-band re-
cordings) tested with 3G phone data (narrow-band re-
cordings) is 4.68%; vice versa, the EER is 18.51%.  A pos-
sible reason is that the high-frequency band of wide-band 
recordings contains real speaker information, whereas up-
sampling the 3G phone data from 8kHz to 16kHz inserts 
irrelevant speaker-related information to its high frequency 
band.  Specifically, wide-band speaker models capture a 
greater amount of speaker characteristics and hence outper-
form narrow-band speaker models. 
One exception is observed when the PC speaker model is 
tested with PC and PPC testing data.  Analysis shows that 
when the PC speaker model is tested with PC recordings, 
we found that there are 2 speakers with significantly higher 
EER (8.41% and 8.45%) that raise the overall EER of 
matched PC-based evaluation.  However, when tested with 
PPC speech, these same speakers have EERs of 2.81% and 
1.91%,   which are about average.  If these two speakers are 
excluded from the evaluation, the EERs of PC speaker 
model tested by PC and PPC speech are 1.36% and 1.37% 
respectively.  The anomalous results disappeared.   
In addition, we find in Table 4 that the PC speaker model 
outperforms the PPC speaker model when they are tested 
with PPC speech (see the cells in shadow).  This anomalous 
result is also independently observed by our collaborator [6] 
in their experiments.  It may be due to the high noise level 
of the PPC data, which weakens the discriminative power of 
the PPC's speaker models. 

5.5. Lamb-sheep figure of the speakers in M3 

“Lamb”, “goat” and “sheep” are defined by Koolwaaij et.al 
in their work [9] to classify speakers in a SV system.  Under 
this classification, a speaker with high FAR is called a lamb 
(easily imitated), a speaker with high FRR is called a goat 
(easily rejected) and a speaker with both low FAR and FRR 
is called a sheep.  Adopting these definitions here, we pre-
sent a lamb-sheep plot to analyze the speech data used in 
our experiments.  In the lamb-sheep figure, the x-axis shows 
the speaker-dependent FRR and the y-axis shows the 
speaker-dependent FAR.  Thereafter, the speakers can be 
located in the lamb-sheep figure according to their speaker-
specific FRRs and FARs.  For example, in the device-
matched PC experiment, each speaker’s individual FAR and 
FRR can be calculated with the predefined speaker inde-
pendent threshold.  Figure 3 shows the distribution of the 
M3 speakers in terms of their SV performances.  The two 
“lambs” (represented by asterisks) observed in Figure 3 are 
exactly those who introduced anomalous results in the PC 
device-matched and device-mismatched experiment dis-
cussed in Section 5.4.   

Figure 3. Lamb-sheep figure of device-matched PC test-
ing case.

6. CONCLUSIONS 
This paper empirically investigates how device, language 
and environmental mismatch affect SV performance based 
on the M3 Corpus.  We found that device mismatch brings 
relative performance degradation of 523%; language mis-
match brings 284% and environmental mismatch brings 
109%.  In particular, for device-mismatched SV, verifica-
tion with wide-band models and narrow-band test data out-
performs verification with narrow-band models and wide-
band test data.  Investigation in environmental mismatch 
indicates that the 3G phone generally gives a low SV per-
formance but its performance remains stable across different 
environments.  A “lamb-sheep” figure is also proposed to 
help analyze the speech data and speaker model’s quality in 
a SV system. 
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