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ABSTRACT
A low-resource, text-independent speaker verification (SV) system
with an efficient voice model compression technique is described,
including its implementation exclusively with integer arithmetic. We
describe and discuss the individual algorithmic steps, the integer im-
plementation issues and its error analysis. Performance of the sys-
tem is evaluated on data collected with iPaq devices and the impact
of model compression as well as integer approximation on the accu-
racy is discussed.

Index Terms— Speaker verification, embedded systems, voice
model compression, integer arithmetic

1. INTRODUCTION

Recent progress in speaker verification technologies was largely fo-
cused on server-based applications for telephony [1]. With current
rapid development in built-in, mobile and portable systems and ap-
plications, it becomes feasible to deploy speech applications, includ-
ing nontrivial ones, in these computing environments [2]. This, to-
gether with growing importance of all aspects of IT security, makes
the deployment of speaker verification (SV) technology outside its
traditional domain an attractive goal.

An “embedded system” can be for example a PDA, smartphone,
car computer or a built-in controller in an instrument or appliance.
Most often it uses resource-constrained, low-cost hardware, often
with focus on low power, as many embedded systems are portable
and battery-operated. A typical modern embedded system capable
of speech processing uses a general-purpose 32-bit RISC processor.
Examples of such architectures are ARM, IBM PowerPC and Hi-
tachi SH-4.

SV technology in embedded systems faces several issues and
challenges as follows:

• While the acoustic channel variability may be limited (sin-
gle microphone per device), the system still may be used in
diverse acoustic environments.

• The voice model may need to be stored on a smartcard or
other secure medium of considerably limited capacity. There-
fore its size becomes a significant factor.

• Computing power and memory may be limited by the archi-
tecture, hardware sizing and low-power requirements. For
example, most embedded processors have no floating point
arithmetic unit.

This paper presents a text-independent SV system that aims at
achieving high accuracy while addressing the above challenges aris-
ing in embedded applications.

This work was partly supported by SAFIR project, funded by European
Union (FP6-IP/e-Government, IST-507427).

2. ALGORITHMS

The speech is parameterized as a sequence of 19-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) and their first derivatives,
post-processed via a marginal Gaussianization technique proposed
in [3]. For modelling, we use a system based on Gaussian Mixture
Models (GMM) and a likelihood-ratio detector. Each target model
is a Maximum A-Posteriori (MAP) adaptation of a Universal Back-
ground model (UBM) in terms of its mean vectors, as proposed in
[4]. More specifics on the training procedure are given in [5]. The
scores in our system are calculated as a lower bound on the average
log likelihood-ratio (LLR) of an utterance x1, . . . ,xT given a target
and the UBM:
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count (index 1 pertains to the UBM, index 2 to the target model) [6].
This average componentwise ratio, l typically compares in perfor-
mance to the original LLR, but since in our system only the maxi-
mum scoring UBM component for a frame xt is used, the posterior
γ becomes an indicator function and the above bound becomes an
equality. Due to the fact that the target GMM shares the precision
matrix with the UBM, the Eq. (1) is a linear function of the feature
space:
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where μ1i,μ2i are the UBM and the target mean vectors for the i-th
component, respectively, Σ−1

i is the corresponding UBM precision
matrix, and k is the top scoring component. The linear coefficient
vector a1 and the scalar a0 are therefore a suitable set to represent
the target model and offer a basis for compression as described be-
low. The final scores are normalized using T-Norm technique [7].

3. MODEL COMPRESSION

For embedded systems in particular, it is essential to exploit speaker
models with a small footprint and scoring schemes that are highly
efficient. Such algorithms should sustain little to no degradation in
recognition performance. In the optimized system1 described in this
paper only a small degradation in performance was observed.

1The efforts of Ming Liu are acknowledged for the work performed on
model compression.
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Parameter Storage Bits Number of

Type (per dimension) Quantized Levels

a1 4 16

a0 10 1024

soft counts 6 64

Table 1. Bit assignments for voice model compression.

3.1. A Compact Model Representation

Our approach to model compression involves storing a compact rep-
resentation of the linear and bias parameters. This method is based
on previous work [8], with the difference that we perform scalar, per-
dimension compression, rather than vector compression to achieve a
small model footprint.

This is achieved by compressing the value a0 and each element
in vector a1 from Eq. (2) for all Gaussian components. These com-
pressed parameters are stored in the voice model and can be used
for scoring (speaker verification). For further voice model adapta-
tion, soft counts derived from the GMM MAP adaptation training
are required as well.

The data items are compressed by nonlinear quantization. To
minimize the mean square quantization error, the specific quantiza-
tion tables (one for a0, one for each dimension of a1 and one for
soft counts) are based on the actual statistical distribution of its re-
spective elements across all Gaussian components. These tables are
part of the UBM data and are shared by all voice models. The bit
resolution used for each item is listed in Table 1.

If each uncompressed parameter of a model is stored using 4-
byte float precision for a 38-dimensional feature space, then the stor-
age required relating to a single Gaussian component is 154 bytes.
In contrast, the compressed model uses 21 bytes per mixture com-
ponent. Thus, the compressed model achieves more than a 7 times
reduction in size with only a small degradation in accuracy.

3.2. Rapid Enrollment and Scoring

Typically for GMM based speaker verification systems, speaker en-
rollment and scoring involves the probability density estimation of
each speech frame given each Gaussian component within a GMM.
This evaluation can involve significant computation time and a num-
ber of proposals have examined this with possible optimizations [9].
Another possibility is to reduce overhead by exploiting Gaussian
prediction, or more specifically, where given the most significant
scoring Gaussian component for the previous frame, predict the N
most likely Gaussian components for the current speech frame and
evaluate only those.

The prediction of the most likely Gaussian components may be
achieved in multiple ways. One approach is the Kullback-Leibler
distance criterion whereby the N-closest Gaussians are selected as
possible generators of the frame in question. A more successful ap-
proach is based on the analysis of out-of-set audio data to infer the
probabilistic transitions between Gaussians.

To determine the probabilistic transitions, for each speech frame
(extracted from development data), the top few scoring Gaussians
were noted. In this work it was assumed that the top 5 Gaussians
contributed to the likelihood of their corresponding frame. A transi-
tion probability matrix may then be established. For example; given
the top Gaussian index for a speech frame, a search table recording
the top 512 most likely components (as used in this evaluation) for a
2048 component GMM may be constructed. Each Gaussian compo-
nent of the UBM correspondingly contains a 512 component search

table. Thus, when this information is incorporated for enrollment
and scoring, a speed-up of almost four times can be achieved with
minimal performance degradation. As a safety measure for avoid-
ing dead-end transitions, a full Gaussian refresh search is performed
once every 100 frames.

4. INTEGER ARITHMETIC

As already mentioned, CPUs in most embedded systems do not have
a floating-point arithmetic unit and therefore they can perform arith-
metic on real numbers, transcendental function calculation or even
integer division only through library calls, whose cost typically is
dozens of CPU instructions per operation. Therefore computation-
ally intensive algorithms need to be implemented solely or mostly
using native integer arithmetic.

4.1. Implementation

We have used two approaches to integerization of the SV algorithm.
Feature calculation up to log-spectrum uses per-frame block floating
point, i.e. integer math, where the power-of-two data scale is dy-
namic, but shared by all items of a vector [10]. The remaining code
is implemented as fixed point using multiple static scaling factors
chosen to completely prevent arithmetic overflows, as overflow de-
tection and handling is expensive in high-level languages. The native
32-bit integer word is then used for intermediate results, and data val-
ues (variables) are represented with 12–15 bits (this is dictated pri-
marily by need to avoid overflow on multiplication). This technique
offers an integer algorithm implementation, whose cost in executed
instructions is only slightly higher than in the original floating-point
case. The only additional operations are the ones needed for fixed-
point rescaling, usually after multiplication or long summation.

Math functions used at runtime (square root, exponential and
logarithm) were implemented via table lookup with linear interpo-
lation over a limited interval (e.g. 〈0, 1) or 〈1, 2), using their prop-
erties for rescaling values for arguments outside that range. This
provided efficient and portable code and a reasonable, easy to tune
tradeoff between data size and computing cost. For example, the
implementation of square root has relative accuracy around 2−13 ≈
10−4. It uses circa 10 arithmetic operations and a 1 kB data table.

4.2. Error Analysis

With limited word-length arithmetic, the question of numerical sta-
bility and accuracy arises. In the following we provide some theo-
retical insight using elements of statistical error analysis.

First, let’s consider a simple case of quantization or roundoff er-
ror. Let v be a real value represented in binary fixed point, i.e. by an
integer quantity Q(v) such that Q(v) = round (vS) =

⌊
vS + 1

2

⌋
,

where the scale S = 2N . The signed integer N can be interpreted
as the position of the fixed binary point within Q(v), i.e. v is ap-
proximated by v∗ = Q(v)2−N . The roundoff error ε(v) = v∗ −
v can be considered a random variable with uniform distribution
U(−2−(N+1), 2−(N+1)) and its variance is var(ε(v)) = 2−2N/12.

It is worth noting that while every operation has potential round-
off error in floating point math, sums and products are accurate in
fixed point arithmetic. The most common operation with roundoff
error is downscaling (i.e. moving binary point right) that follows
most multiplications or multiply-accumulate expressions.

In a signal processing algorithm like SV feature calculation,
scoring or training, roundoff errors propagate and also new ones are
introduced. To provide a statistical view of error propagation, let us
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consider a single algorithmic step represented by an arbitrary vector
function y = F (x), where x = (x1 . . . xn) and y = (y1 . . . yp).
F (x) could be, for example, the Fourier transform of a single audio
frame or cepstra calculation. If x is a random variable with mean x0

and a covariance matrix Cx, whose elements are sufficiently small,
the output covariance matrix Cy can be approximated using a first-
order differential as follows:

Cy ≈ F x(x̄)CxF
T
x (x̄) (3)

where F x is the Jacobian of F (see e.g. [11]). If we interpret x
as a representing the accurate quantity x0 = x̄, with random error
characterized by Cx, then Cy is the covariance matrix of the error
of y0 = F (x0). The caveat of this formula is that it applies only
to differentiable F (x) and that the expression quickly becomes in-
tractable even for a small number of algorithmic steps. Moreover,
this type of analysis does not take into account the roundoff / ap-
proximation error of the calculation itself.

In practice, the elements xi’s (and yj’s) often can be considered
statistically independent, Cx and Cy then are diagonal. The ele-
ments of Cy can therefore be considered separately and the equa-
tion (3) can be simplified to classical error propagation law (f = Fj
here):

var(f(x)) =

n∑
i=1

(
∂f

∂xi

)2
var(xi) (4)

Often the calculation / approximation f∗(x) of f(x) itself is loaded
with roundoff or similar additive error ε(f(x)) = f∗(x) − f(x).
Of course, the roundoff error is not really a random value, but a
complicated and quickly changing function of the input vector x
and can be treated as random and uncorrelated to f(x) only when
the values x and f∗(x) themselves can be considered random with
sufficiently “wide” distribution.

The varianceRf (x) = var(ε(f(x))) of such error must be then
added to (4), which becomes

var(f∗(x)) = Rf (x) + var(f(x)) (5)

Another aspect of roundoff errors are the rounded values of con-
stants used in the calculation, e.g. the coefficients of the preemphasis
filter, FFT sine/cosine tables, UBM values etc. The error they intro-
duce is not random, but systematic and therefore cannot be analyzed
using the above assumptions.

We performed error analysis by comparing the algorithm’s inter-
mediate results using both integer and float calculations and obtain-
ing the statistics of cumulative absolute error εI(y) = yint − yfloat.
As different intermediate results have different dynamics, we charac-
terize their inaccuracy by relative cumulative roundoff error δI(y) =
εI(y)/σ(y), where σ(y) is the standard deviation of y.

Similarly, we have explored the effect of error from constant
rounding by calculating the statistics of εC(y) = yrnd−yfloat. Here,
yfloat, yint are values from the float, resp. integer variant of the
algorithm. yrnd come from a special variant of float algorithm, that
uses all real constants rounded as they would be in their fixed-point
form in the integer algorithm.

The statistics for selected intermediate values from model train-
ing process that characterize our SV implementation are summarized
in Table 2. There are several interesting aspects of the data:

• The cumulative errors from rounded constants are smaller
than total roundoff error at least by an order of magnitude
and therefore can be considered insignificant.

• Overall, the integer feature extraction process has a good cu-
mulative accuracy (0.1% relative for cepstra).

Value Dynamic Abs.Err. Abs.Err. Rel.Err.

of y (total) (constants) (total)

y σ(y) σ(εI(y)) σ(εC(y)) δI(y)

Feature calculation:
FFT 1,172 6.5 0.25 0.38%

Mel filters 19,200 24 2.7 0.13%

log filters 10.6 0.082 5× 10−4 0.77%

cepstra 66 0.37 0.05 0.10%

Training statistics:
counts 6.4 0.26 0.05 3.3%

sums 6 0.19 5× 10−5 3.1%

Voice model data – see Eq. (2):
a0 0.67 0.054 2× 10−4 8%

a1 0.34 0.048 6× 10−4 14%

Table 2. Roundoff errors in model training.

• The sharp increase in the relative error in model statistics in-
dicates that the results of searching the UBM for maximum-
likelihood prototypes are very sensitive to small perturbations
in the data.

5. DATABASE

The embedded audio database used for testing is part of a larger in-
house2 data collection spanning the telephony and embedded audio
spaces. The goal of each data collection was to be able to focus on
the separation of various speaker, channel and speech content arti-
facts. A journal of records described each audio sample accordingly.
This form of collection was acquired in such a manner to facilitate
experiments that would effectively measure effects of matched audio
content spoken by impostors and mismatched audio content spoken
by uninformed target speakers.

The embedded speech data set consists of multiple sessions from
a collection of speakers recorded at 22,050Hz with 16-bit resolution
on a HPTM Pocket PC iPaq H4350 device. Each session consists of
read and spontaneous answers to 30 prompts. It took about 5 minutes
to record the session, yielding about 2 minutes of speech. Typically,
the duration of each response was 2 to 20 seconds. An important
note is that speakers were not permitted to provide another recording
session on the same day.

The evaluation protocol utilizing this data was carefully struc-
tured to provide mutually exclusive speaker sets for system develop-
ment and finally for system evaluation. System development con-
sisted of training a Universal Background Model (UBM) trained
from 535 sets of 30-item sessions spoken by 284 speakers. T-Norm
speaker models were also trained from this set. The speaker recog-
nition evaluation phase was performed using 178 models with each
model trained on all 30 items for a speaker during their first record-
ing session. For speaker testing, there were 903 test files from 181
speakers for a total of 159831 trials. Of the 181 test speakers, 4 were
not from the enrollment speaker set. Each test utterance consisted
or either one read or spontaneous item from the speaker’s second
recording session. The selected utterances typically ranged in dura-
tion from 2 to 10 seconds. The result is a configuration that provides
a good coverage of spoken context.

2The authors acknowledge the contributions of William J. Ablondi, Allen
Delmar and John Dildine for managing the embedded device audio data col-
lection.
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EER%
model T-Norm

System compression yes no

float yes 1.6 2.9

no 1.4 2.8

integer yes 1.5 3.1

no 1.3 2.8

float + noise yes 1.4 2.9

Table 3. Scoring accuracy – float vs. integer system.

Math Avg. Audio % Real CPU2

Length [s] Time1 [Mcyc/s]
training integer 167 18% 37

float 400% 830

scoring integer 8 27% 56

float 410% 840
1CPU time per sec. of audio (22 kHz). 2CPU cycles per sec. of audio.

Table 4. Integer system performance on iPaq 3600.

6. RESULTS

6.1. Accuracy

The system accuracy with a UBM consisting of 1024 components,
measured in terms of the Equal Error Rate (EER), is shown in Ta-
ble 3. Both training of the models and scoring was performed us-
ing the same arithmetic variant. Note the impact of T-Norm and
the somewhat surprising improvement in EER for the integer system
with T-Norm over the floating-point one. As this improvement has
been seen in earlier experiments as well and shown to be statisti-
cally significant, we conducted an experiment using the float algo-
rithm in which the integer roundoff error in feature calculation dur-
ing training was replaced by random Gaussian noise, whose variance
matched the variance of individual cepstral coefficients’ roundoff er-
ror. The hypothesis was that such a training results in a model with
a better coverage of voice variations of the same speaker. While the
experiment did reproduce the accuracy improvement, other similar
tests with varied noise level were inconclusive.

Further, as expected, a slight degradation in accuracy can be seen
due to model compression.

6.2. CPU Performance and Resources

Performance of the integer SV training and scoring was mea-
sured on a real-world embedded system – iPaq 3600 handheld com-
puter, running Linux. The device has Intel StrongARM 1110 pro-
cessor (ARM v.4 architecture, 32-bit RISC, no FPU) with 206MHz
clock and slow memory (92 CPU cycles per 32B cache line load).
The average timing results are in Table 4. Clearly, the integer SV
code consumes only a fraction of the device’s CPU power, if real-

Data Item Size Note
UBM 836 kB 1024 prototypes

voice model (compressed) 21 kB

T-Norm cohort 3747 kB 178 voice models

Table 5. Sizes of SV data.

time audio feed is considered. The float code is 14–22× slower.
The sizes of SV data are listed in Table 5. The sizes of UBM and

voice models scale with the feature vector dimension and number of
components, as evident from Section 3.

6.3. Discussion

The described SV system provides accuracy high enough to be prac-
tically useful in embedded applications.

Compared to the telephony environments, the channel variabil-
ity factor is considerably reduced in our experiments. Interestingly,
the improvement in accuracy brought about by T-Norm (supposed to
reduce the effect of the channel variability) is still significant.

Voice model compression provides size reduction, which is cru-
cial in two ways. First, it is necessary for storing such models on
secure media like smartcards. Second, the cohort size is reduced,
enabling the use of the T-Norm even on devices with limited mem-
ory. The accuracy loss associated with the model compression is
acceptable.

The integer implementation of SV fits well within the constraints
of many current embedded systems. Its accuracy can paradoxically
be even better than that of the original algorithm. There is anec-
dotal evidence of useful role that the roundoff noise may play in
the training process, but more work is needed to further explore this
phenomenon.
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