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ABSTRACT 

 
In this paper, we investigate SVM-based speaker 
verification by location in the space of reference speakers. 
Speaker location is represented by a vector of log-
likelihoods of utterance data given reference speaker 
models. Channel or session variability in speaker locations 
due to microphone, acoustic environments etc. would impair 
verification performance. To reduce such variability, 
Within-Class Covariance Normalization (WCCN), Nuisance 
Attribute Projection (NAP) and their combination are 
applied, and significant performance improvements are 
obtained. Experimental results on a NIST SRE 2006 task 
show that this location SVM system achieves comparable 
performance to a state-of-art cepstral GMM-UBM 
verification system, and their fusion can give additional 
performance gains. 
 

Index Terms— supporting vector machines, session 
variability, speaker location, speaker recognition, speech 
processing. 
 

1. INTRODUCTION 
 
The use of a set of reference speakers to model a speaker 
has been extensively studied for many tasks in speech 
processing, e.g. rapid speaker adaptation [1, 2], speaker 
recognition [3, 4] and tracking [5]. In [3], anchor models 
and speaker location vector were proposed for speaker 
verification and indexing purposes; although its 
computational efficiency for speaker indexing in large audio 
database was shown to be superior to that of cepstral GMM-
UBM, the verification performance by location fell short of 
a state-of-art cepstral GMM-UBM system. This is related 
with the issue of channel or session variability in speaker 
location vectors (due to microphones, acoustic 
environments, etc.). In [4], statistically modeling of speaker 
location vectors with a Gaussian distribution was proposed 
to address such kind of variability, and some promising 
results were reported. As we will show later, the statistical 
approach in [4] has much in common with using proper 
kernel function in SVM-based classifiers. 

In recent years, support vector machines have become 
one of the most important and widely used classification 
techniques in the field of speaker recognition. In [6, 7], the 
Within-Class Covariance Normalization (WCCN) technique 
for training generalized linear kernel of SVMs was 
introduced, which identifies and optimally weights 
directions of underlying feature space to maximize task-
relevant information. In [8], Nuisance Attribute Projection 
(NAP) was developed to do projection to remove 
dimensions from the SVM feature space that are irrelevant 
to the classification problem.  

In this study, we apply WCCN and NAP to reduce or 
compensate session variability in speaker location vectors, 
and performance improvements are obtained for location 
SVM verification systems; furthermore, their combination is 
found to provide significant performance improvements of 
up to 19% in Equal Error Rate (EER) and 18% in the NIST 
minimum Detection Cost Function (DCF) than single 
technique alone. 

This paper is organized as follows. In Section 2, we 
describe the concepts of anchor models and speaker 
location. In Section 3, we present the construction of 
location SVM systems and some discussions about WCCN 
and NAP. In Section 4, we report experimental results on a 
NIST speaker recognition evaluation (SRE) 2006 task. We 
end with conclusions and future work in Section 5. 
 

2. ANCHOR MODELS AND SPEAKER LOCATION 
 
Speaker location in the space of reference speakers is 
represented by the following vector, v  [3] – [5]: 

 1 2

T

Ep p pxv x x x  (1) 

where ; 1, 2, ,i i E  is a set of well trained reference 
speaker models (called anchor models), which are usually 
modeled as Gaussian Mixture Models (GMM) and adapted 
from a Universal Background Model (UBM) [9]; ip x  

is the normalized log-likelihood of the speaker utterance 
data x  (of L  acoustic feature vectors) for the i-th anchor 
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model, i , relative to the Universal Background Model, 

UBM , 
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3. SVM-BASED SPEAKER VERIFICATION BY 
LOCATION IN THE SPACE OF REFERENCE 

SPEAKERS 
 
In the speaker location SVM systems, the location vector v  
is treated as input feature and modeled using support vector 
machines. In the standard formulation, a SVM, f v , is 
given by  

 1

1
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,
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i i
i
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i i
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f k b

b

v v v

v v
 (3) 

where 1 2,k v v  is a kernel function and v  is a feature 
transformation function. The relationship between the 
feature transformation  and the kernel function k  is that 
 1 2 1 2, ,k v v v v  (4) 

where ,  stands for inner product. The b  and 

, ; 1, ,i i i Mv  are obtained through a training process 
that maximizes the margin between two classes (positive vs. 
negative). One of the critical problems in SVM-based 
systems is the choice of kernel or feature transformation 
function. In this study, the generalized linear kernel is used, 
i.e.  
 1 2 1 2, Tk v v v Rv  (5) 

Three location SVM systems are constructed based on 
different choices of kernel parameterization or feature 
transformation function.  
1. In the first system (denoted as Location SVM I), the 

R  in (5) is simply set to be the identity matrix, I , i.e. 
a linear kernel SVM.  

2. In the second system (denoted as Location SVM 
WCCN), R  is set to be 1W , i.e. 

 1
1 2 1 2, Tk v v v W v  (6) 

where W  is the expected within-class covariance 
matrix of location vectors over all classes. It can be 
represented mathematically as [6, 7], 

 
1

J

j j
j

pW  (7) 

where jp  and j  represent respectively the priori 
probability and covariance matrix of the j-th class, J is 
the total number of classes. Through Within-Class 
Covariance Normalization (WCCN), the generalized 

linear kernel in (6) can be implemented through the 
following feature transformation function, 

 1 2 Tv U v  (8) 
where  and U  can be obtained through the 
eigenvalue decomposition of W , 

 TW U U  (9) 
 is a diagonal matrix with W ’s eigenvalues on the 

main diagonal, columns of U  are eigenvectors of W . 
3. In the third SVM system (denoted as Location SVM 

NAP), Nuisance Attribute Projection (NAP) is used to 
do feature projection. In this case, the feature 
transformation function  is given by  

 T
m mv I U U v  (10) 

where mU  is a matrix whose columns are composed of 
m eigenvectors with largest eigenvalues of the within-
class covariance matrix, W . (In our following 
experiments, the value of m was set to be 10.) 

 
3.1. Discussion 
 
In the above location SVM systems, both WCCN and NAP 
use the within-class covariance matrix as means to capture 
session variability in speaker location. After projecting the 
original feature onto the orthogonal space spanned by the 
eigenvectors of W , NAP totally discards such directions 
which cause much variability (corresponding to have large 
eigenvalues of W ) in the kernel and restricts classification 
to the remaining subspace; alternatively, WCCN inversely 
weights the contribution of each direction based on their 
extent of variability. In the following section, we will 
investigate their performance for location SVM systems and 
explore if they could be combined properly.  

In [4], session variability in speaker location was 
addressed, and the within-class covariance matrix was used 
in statistically modeling of speaker location vectors. 
Speaker verification was carried out through  

1 1

,
score log

,
spk

UBM

T T
spk spk UBM UBM

N

N
x

x

x x x x

v W

v W

v W v v W v

 (11) 
where spk  and UBM  are respectively the average of 
location vectors of target and background speakers. This 
scheme has much in common with using 1W  in 
generalized linear kernel. In Section 4, we will briefly 
compare its performance with SVM-based systems. 
 
3.2. Implementation 
 
During training stage, a database which contains multiple 
sessions of recordings for each speaker is used. For each 
session of utterance, a location vector is calculated; and 
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location vectors of utterances from the same speaker are 
assigned to one class. The within-class covariance matrix is 
estimated as a weighted average of each class’s sample 
covariance matrix, 

 
1

1ˆ ˆ
J

j j
j

N
N

W  (12) 

where N  is the total number of background speaker 
location vectors and jN  is the number of vectors in the j-th 

class whose sample covariance matrix is ˆ
j . 

We use SVMTorch to train SVM-based speaker models 
[10]. Each speaker model is trained using the location 
vectors of the speaker’s enrollment utterances as positive 
examples, and the location vectors of all utterances from 
background speakers as negative examples. 
 

4. EXPERIMENTS AND RESULTS 
 
In this section, we report speaker verification experiments 
by location in the space of reference speakers. Section 4.1 
presents some general experiment setup information about 
the task, corpora, features and configuration of the reference 
speaker space. The results of these experiments are 
discussed in Section 4.2. 
 
4.1. Experiment Setup 
 
Speaker verification experiments were conducted on the 
2006 NIST SRE corpus [11]. We focused on the single-side 
1 conversation train, single-side 1 conversation test task. 
This task involves 3,612 true trials and 47,836 false trials. 

A cepstral GMM-UBM system [9] was setup as a 
baseline for performance comparison; it also provided the 
basis for the construction of anchor models and calculation 
of speaker location in the reference speaker space. For 
cepstral feature extraction, a 13-dimensional PLP is 
calculated every 10 ms using a 25ms Hamming window. 
First, second and third order derivatives over a 2  frame 
span are computed and appended to each feature vector, 
which results in dimensionality 52. Heteroscedastic linear 
discriminant analysis (HLDA) is then used to decorrelate 
the features and reduce the dimensionality from 52 to 51. 
RASTA, feature mapping and histogram equalization 
(HEQ) are applied to improve channel and noise robustness. 
Gender independent UBM with 2048 Gaussians is trained 
using about 40 hours of data from the Switchboard corpora. 
Speaker GMM models are adapted from UBM by MAP-
adaptation with relevance fact set to be 16 (only the means 
are adapted).  

Some reference speakers are selected from the 
Switchboard corpora. Their models are adapted from the 
UBM and used as anchor models in the reference speaker 
space. Considering computational efficiency and no cross 
gender trials in the NIST SRE task, gender dependent 
reference speaker spaces are constructed with 248 anchor 

models in the male space and 335 in the female space. Male 
and female speakers are represented and tested separately in 
corresponding reference space. 

In the reference speaker spaces, location vectors of 
utterances in a subset of the 2004 NIST SRE corpus (the 
single-side, 1 conversation train, single-side, 1 conversation 
test part) are calculated as negative examples of SVM 
training; and these background location vectors, whose 
speaker id information is extracted from the answer key 
provided by NIST, are also used to estimate gender 
dependent within-class covariance matrices. In the male 
reference speaker space, there are 763 background location 
vectors from 130 speakers; in the female space, there are 
1027 background location vectors from 191 speakers (on 
average, each background speaker has about 5 sessions). 

 
4.2. Results 
 
In Fig.1, we show verification performance for various 
systems that use speaker location in the reference speaker 
spaces. From this figure, it can be seen that “Location SVM 
WCCN” and “Location SVM NAP” have comparable 
performance; and they are better than that of the basic 
“Location SVM I” system. After reducing or compensating 
session variability in location vectors through WCCN or 
NAP, speaker location in the reference spaces becomes 
more stabilized; and this facilitates SVM-based verification.  

In this figure, “Location SVM WCCN+NAP” stands 
for the combination of “Location SVM WCCN” and 
“Location SVM NAP” systems. This combination was done 
in the score level, and scores from these two systems were 
linearly combined with equal weights, i.e. 

Fig.1 Verification performance by location in the space of 
reference speakers 
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 .  .  .  Loc SVM WCCN NAP Loc SVM WCCN Loc SVM NAPS S S  (13) 
The “Location SVM WCCN+NAP” system achieved 
significant performance improvements of up to 19% in EER 
and 18% in the NIST minimum DCF [11] compared with 
“Location SVM WCCN”. This is an interesting result which 
indicates that “Location SVM WCCN” and “Location SVM 
NAP” could provide complementary decision results 
because of their different ways of disposing of session 
variability.  

In Fig.1, “Location Log-Likelihood Ratio” shows 
verification performance using the score given by equation 
(11), it can be seen that it has comparable EER with 
“Location SVM WCCN”. 

In Fig.2, the performance of location SVM system was 
compared with the cepstral GMM-UBM systems. It can be 
seen that “Location SVM WCCN+NAP” achieved 
comparable performance to the GMM-UBM baseline which 
is denoted as “Cepstral GMM-UBM” in Fig.2. These two 
systems were then fused using logistic linear regression 
developed by Brümmer [12], and better performance was 
obtained than that of single system alone. The “Cepstral 
GMM-UBM TNorm” system stands for cepstral GMM-
UBM system with TNorm score normalization [13]. The set 
of imposter speakers used for TNorm is the same as that for 
anchor models. As shown in Fig.2, the fusion of “Location 
SVM WCCN+NAP” and “Cepstral GMM-UBM” provided 
better performance than that of a state-of-art cepstral GMM-
UBM system with TNorm; and the fusion of “Location 
SVM WCCN+NAP” and “Cepstral GMM-UBM TNorm” 
can further gain performance improvements. 

5. CONCLUSION 
 
We have proposed a speaker verification approach based on 
SVM modeling of speaker location in the space of reference 
speakers. Steady performance improvements are achieved 
after applying Within-Class Covariance Normalization and 
Nuisance Attribute Projection to reduce or compensate 
session variability in location vectors. It is also found that 
the SVM system using WCCN normalized location and the 
system using NAP projected location could provide 
complementary decision results and be combined in score 
level to significantly improve performance. The combined 
location SVM system achieves comparable performance to 
cepstral GMM-UBM systems on a NIST SRE 2006 task. 
Further performance improvements are obtained by fusing 
the location SVM and cepstral GMM-UBM systems. 
Refining the reference speaker space for location SVM 
systems will be studied in future work. 
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Fig.2 Verification performance comparison of location SVM and 
cepstral GMM-UBM systems 
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