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ABSTRACT

In speaker recognition applications, speaker identification is the process
of automatic recognizing who is speaking based on statistical infor-
mation obtained from speech signals. Considering the limited num-
ber of tests in real situations during the classification phase, it is more
useful to have an estimator of the probability of error for speaker
recognition systems. In this work, we propose a method based on
the log-likelihood of each speaker to estimate the probability of er-
ror of a speaker recognition system. We assess the performance of
the estimator with experimental trials and compare with the actual
number of errors. The results show that the performance of our es-
timator is comparable to the conventional method. The proposed
method presents better reliability and fast convergence compared to
the counting case. Indeed, we attain an analytical expression for the
probability of error that can be used as a gradient for other optimiza-
tion methods in speaker recognition applications.

Index Terms— Bayes procedures, speaker recognition , gaussian
distributions, modeling, estimation.

1. INTRODUCTION

Speaker recognition is the process of automatically recognizing who
is speaking based on statistical information provided by speech sig-
nals. Speaker recognition can be classified into speaker identification
and speaker verification [9]. This work focuses on speaker identifi-
cation systems, which purpose is to determine from a set of known
speakers the best match to an input utterance.

Speaker identification systems can broadly be divided into two
phases: design and classification. In the design phase, a set of sample
features belonging to a speaker is used to determine a model which
best represents the speaker. In this study, the Expectation Maxi-
mization (EM) algorithm [13] is used to estimate Gaussian Mixture
Models (GMMs) for each speaker. The EM algorithm provides Max-
imum Likelihood (ML) estimates for the unknown model parameters
from the training samples. In the classification phase, the GMMs ob-
tained from the design phase are used to compute the probability that
unknown test samples belongs to a given speaker. In speaker identi-
fication systems, the performance of the whole system is assessed by
the probability of error. It is important to measure the performance of
speaker recognition systems in terms of probability of error for both
system evaluation and system development. The measurement of
the confidence of the probability of error has been studied in several
papers e.g.,[6], [5], [2], [12], [4],[1]; wherein statistical approaches
and integration of multiple sources of information are used to assess
the probability of error.

Statistical estimation theory is a tool that has proven very useful to
determine models in speaker recognition and other pattern classifica-
tion applications [10][7]. There are several papers where algorithms
for estimation of parameters are used and analyzed. The quality of
the estimator can be statistically measured by computing the vari-
ance of the estimator and the convergence to the correct value. The
novelty of our approach is to estimate the reliability of the classifi-
cation system itself (i.e., not of the performance of the system). The
advantage is that this measure is more reliable when there are limited
number of tests, such as e.g., real situations.

The main contribution of this work is a theoretical study of the
connection between the log-likelihood of a set of test samples from a
speaker, and the classification error. We determine an analytical ex-
pression for an estimator of the classification error for speaker iden-
tification systems. Experimental results using the YOHO database
[3] were performed to validate that the efficiency of the estimator
over the conventional method of counting the errors.

2. STATE-OF-THE-ART SPEAKER RECOGNITION

Most state-of-the-art text-independent speaker recognition system
use GMMs to represent a statistical model of each speaker. The
GMM for a speaker s is defined as

h(s) (ξ) =

M�
k=1

w
(s)
k g � ξ, μ

(s)
k , C

(s)
k � (1)

i.e., h(s) (ξ) is a weighted sum of Gaussian distributions g(ξ, μ
(s)
k , C

(s)
k ),

where μk is the mean and Ck is the covariance matrix of the k-th
Gaussian distribution. Each speaker has a unique model, describing
the particular features of his/her voice. In the classification phase,
the resulting GMMs are then used to compute the log-likelihood
(LL) of a set of samples from an unknown speaker, {ξt}T

t=1, with
respect to the actual speaker GMMs parameters,

LL(s) =
T�

t=1

log h(s) (ξt). (2)

The speaker with the highest log-likelihood is declared as the one
identified,

ŝ = arg max
s,1≤s≤S

LL(s). (3)

The goal of the speaker recognizer is to minimize the probability of
error given by Pe = Pr[s �= ŝ] [8].
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3. ESTIMATION OF THE PROBABILITY OF ERROR (PE)

In this section, we describe the conventional method and our pro-
posed approach to estimate the probability of error for speaker recog-
nition systems. Assuming that a stochastic model (GMM) and a
group of tests1are available for each speaker, we can compute the
log-likelihood (LL) of these tests with respect to the actual GMMs,
such that the number of log-likelihood values obtained for each test
is equal to the total number of speakers.
Let {xi(n)}N

n=1 be a set of N log-likelihood values for the i-th real

speaker and {yi(n)}N
n=1 be a set of the N log-likelihood of the max-

imum of other speakers i.e.,

yi(n) = max(x1(n), x2(n)..., xi−1(n), xi+1(n), ...xS(n)). (4)

Letting {zi(n)}N
n=1 be a set of the difference between the log-likelihood

of the i-th real speaker and the log-likelihood of the maximum of
other speakers,

zi(n) = xi(n) −max(x1(n), x2(n)..., xi−1(n), xi+1, ...xS(n)).
(5)

Substituting yi(n) for the max(x1(n), x2(n)..., xi−1(n), xi+1, ...xS(n))
in (5), we attain

zi(n) = xi(n)− yi(n). (6)

3.1. Conventional Method

The conventional estimator for the probability of error for the i-th
speaker can be described as

Pei =
1

N

N�
n=1

Φ(yi(n)− xi(n)), (7)

where Φ is the unit step function which detects when (yi(n) −
xi(n)) ≥ 0 and N is the number of tests available. The conventional
estimator will make an erroneous decision when yi(n) is larger than
xi(n). The probability of error for the whole system can be defined
as

Pe =
1

S

S�
i=1

Pei = 1
S

1
N

S�
i=1

N�
n=1

Φ(yi(n) − xi(n)), (8)

where S is the total number of speakers in the system.
It is obvious from (8) that some of the inherent information in xi(n)
and yi(n) is discarded, since the only thing that affects Pe is the sign
of yi(n)−xi(n); all the information about the magnitude of the dif-
ference is discarded. Therefore, we propose an improved estimator
of Pe in the next subsection.

3.2. Proposed method

In our proposed method, we use a statistical approach. Letting Xi

and Yi be random variables, and Zi be the difference between Xi

and Yi, we can define the cumulative distribution function (cdf) of
Zi as

FZi
(z) = Pr [Xi − Yi ≤ z] , (9)

1one test is a set of samples from a unknown speaker {ξt}T
t=1. Each test

corresponds to a short spoken sentence (1-2s) by the speaker.

where FZi
(z) is the cdf for every z in the range from −∞ to ∞.

Since we are only interested on the occurrence of errors in the sys-
tem (i.e., z ≤ 0), we can define the probability of error for the i-th
speaker as

Pei = FZi
(0). (10)

The distribution function in (9) can be represented as a two-dimensional
integral [11]. Substituting the limits obtained from (9), we attain

FZi
(z) = � ∞

−∞
� z+y

−∞
fXiYi

(x, y)∂x∂y, (11)

where fXiYi
(x, y) is a jointly probability distribution function (pdf).

Rewriting fXiYi
(x, y) in terms of conditional density functions, we

obtain

FZi
(z) = � ∞

−∞
fYi

(y) � z+y

−∞
f

Xi|Yi
(x|y)∂x∂y (12)

i.e., f
Xi|Yi

(x|y) is the conditional pdf of Xi given a value of Yi.
Rewriting the inner integral in (12) in terms of cdf, we get

FZi
(z) = � ∞

−∞
fYi

(y)F
Xi|Yi

(z + y|y)∂y (13)

where F
Xi|Yi

(x|y) is a conditional cumulative distribution of Xi

given a value of Yi. From (10) and (13), we attain that the probability
of error for the i-th speaker is

P̂ei = FZi
(0) = � ∞

−∞
fYi

(y)F
Xi|Yi

(y|y)∂y. (14)

The integral in (14) is an expectation, and we can write it as

P̂ei = EYi
[F

Xi|Yi
(Yi|Yi)], (15)

where EYi
is an expectation over all values of yi. The probability of

error for the i-th speaker can be approximated by the sample mean

P̂ei =
1

N

N�
n=1

F
Xi|Y i

(yi(n)|yi(n)), (16)

in which as in (8), N is the number of tests available. The probability
of error for the whole system can be derived in a similar way as the
conventional method,

P̂e =
1

S

S�
i=1

P̂ei , (17)

=
1

S

1

N

S�
i=1

N�
n=1

F
Xi|Y i

(yi(n)|yi(n)) (18)

where S is the total number of speakers. We will approximate FXi|Y i
(x|y)

as the cdf of a conditional normal distribution with mean μ
Xi|Yi

(yi)

and variance σ2
Xi|Y i

, which are defined as

μ
Xi|Y i

(yi) = μXi
+

CXi,Yi

σ2
Yi

� yi(n)− μYi � , (19)

σ2

Xi|Yi
= σ2

Xi
−

C2
Xi,Yi

σ2
Yi

(20)

= σ2
Xi

(1− ρ2
XiYi

). (21)
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where

μXi
=

1

N

N�
n=1

xi(n), μYi
=

1

N

N�
n=1

yi(n), (22)

σ2
Xi

=
1

N − 1

N−1�
n

� xi(n)− μXi � 2

, (23)

σ2
Yi

=
1

N − 1

N−1�
n

� yi(n)− μYi � 2

, (24)

CXi,Yi
=

1

N − 1

N−1�
n

� xi(n)− μXi � � yi(n)− μYi � . (25)

i.e., μXi
and μYi

are the sample means, σ2
Xi

and σ2
Yi

are the vari-

ances and CXi,Yi
is the covariance of a set of the log-likelihood

values for the i-th real speaker (Xi), and a set of the log-likelihood
of the maximum of other speakers (Yi). Finally in (21), ρXiYi

is the

correlation coefficient defined as ρXiYi
=

CXi,Yi

σXi
σYi

which satisfies

the condition |ρXiYi
| < 1.

Then, F
Xi|Y i

(x|y) is described as

F
Xi|Y i

(x|y) =
1�

2πσ2
Xi|Y i

x�
−∞

exp ��� − � r − μ
Xi|Y i

(yi) � 2

2σ2
Xi|Y i

	 
� ∂r, (26)

= Q � x− μ
Xi|Y i

(yi)

σ
Xi|Y i  . (27)

Substituting (27) into (18), give us the estimator for the probability
of error

P̂e ≈ 1

S

1

N

S�
i=1

N�
n=1

Q � yi(n)− μ
Xi|Yi

(yi(n))

σ
Xi|Yi  (28)

Comparing (28) with (8), we notice certain similarities between the
estimators. In both cases, the probability of error is defined as an
average over the number of speakers and the number of tests of a
function of yi(n). However in our estimator, the statistics of yi(n)
and xi(n) represented as μ

Xi|Yi
(yi) and σ

Xi|Yi
, provide inherent

information that is not used in the conventional method.

4. EXPERIMENTAL EVALUATION

In this section, we compare the performance of the proposed esti-
mator of Pe with the conventional method in a speaker recognition
system.

4.1. Database Description

The experiments were conducted using the YOHO database [3]. The
first session of each of the 137 speakers in the enrollment sessions
has been used for training. Each speech file, after removing si-
lence at the beginning and end, was segmented into frames of 25 ms
length with an overlap of 10 ms. Each frame was pre-emphasized
and Hamming windowed. Then, a 12-th order MFCC were created
and used to train an 8-mixture GMM. The evaluation database was

created from the 3 remaining enrollment sessions and the verify ses-
sion in a similar way to the one used for training, obtaining 112
tests (N = 112) for each speaker. From the computation of the
log-likelihood of each test, we obtain 137 log-likelihood values, one
for each speaker. We assume that there is only one log-likelihood
value that corresponds to the i-th real speaker and one maximum
log-likelihood value selected from the other 136 other speakers.

4.2. Experiments Implementation

In this section, we describe the implementation of the estimator for
the probability of error. Table 1 shows the algorithm used.

Step 1 Using the evaluation database,
Compute μXi

and μYi
from (22).

Compute σ2
Xi

and σ2
Yi

from (24).

Compute CXi,Yi
from (25).

Step 2 Using the values in step 1,
Compute μ

Xi|Y i
from (19).

Compute σ2

Xi|Yi
from (21).

Step 3 Using the evaluation database and the values in step 2,

Compute P̂e = 1
S

1
N

S�
i=1

N�
n=1

Q � yi(n)−μ
Xi|Yi

(yi(n))

σ
Xi|Yi � .

Table 1. Algorithm used for estimation of Pe.

4.3. Experimental Results

The performance of the estimator was compared against conven-
tional. To obtain a more reliable performance of the estimator in
a statistical way, we sort our sequence of 112 tests in 50,000 random
ways. Figure 1 shows a comparison between the standard deviation
of our estimator and the conventional method over 50,000 realiza-
tions of our sequence of tests. We can observe that the standard
deviation of the estimator is lower compared to the standard devi-
ation of the conventional method regardless of the number of tests,
indicating that the stability of the estimator is better than the conven-
tional case. Figure 2 shows the estimated probability of error for the
conventional method as a function of the number of tests. The dif-
ferent realizations shown are drawn from our sequence of 112 tests.
Figure 3 shows the same approach, but for our estimator. Compar-
ing both figures, we observe that our estimator converges faster and
has a lower variance for small number of tests than the conventional
method. Figure 4 shows a comparison between our estimator and
the conventional method for a single realization. It shows that our
method only requires 10 tests to estimate with high accuracy the
probability of error for a sequence of 112 tests.

5. CONCLUSIONS

Being able to assess the performance (i.e., the probability of error)
over a long term is of great importance for the speaker identification
system optimization. Because of the limited number of tests avail-
able in real situations, measuring the performance is not a trivial task.
The main contribution of this paper is an estimator based on the log-
likelihood values from a set of speaker test samples. Our estimator
was able to overcome the limitation of the number of tests available,
it achieves convergence on a small number of tests (5 tests) and has
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Fig. 1. Comparison of standard deviations between our estimator for
the probability of error and the conventional method.

0 20 40 60 80 100 120
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of Tests

P
e

Fig. 2. Probability of error as a function of the number of tests for
different realizations using the conventional method.
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Fig. 3. Probability of error as a function of the number of tests for
different realizations using our statistical approach.

lower variance regardless of the number tests compared to the con-
ventional method. Moreover, the analytical expression obtained can
foster new paths for developing optimization methods to improve the
probability of error and better feature extractors for speaker recogni-
tion.
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Fig. 4. Comparison between our estimator for probability of error
and the conventional method for a single realization.
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