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ABSTRACT 

 

We extend the state-of-the-art by applying word-conditioning to 

constrain phone N-gram features used in speaker recognition. 

Feature-level combination of 52 word unigrams constraining phone 

N-grams of order 1, 2, and 3 proved to be the best approach. Our 

system achieves 18% and 27% improvements compared to a non 

word-conditioned phone N-grams system on SRE05 and SRE06, 

respectively. Furthermore, the system achieves 18% and 37% 

improvements compared to the non word-conditioned phone N-

grams system when each system is combined with a GMM-based 

system on SRE05 and SRE06, suggesting that the word-

conditioned features are more complementary. On both corpora, 

this approach achieves a 4.7% EER standalone, and a 3.3% EER in 

combination with the non word-conditioned phone N-grams and 

GMM-based systems. Note that the word-conditioning approach 

utilizes only 43% of SRE05 data. 

 

Index Terms — Speaker-recognition, word-conditioning, 

phone N-grams, high-level features 

 

1. INTRODUCTION 

 

Speaker recognition has historically relied on low-level acoustic 

features with GMMs for speaker discrimination [1]. These GMM-

based systems typically use a frame by frame feature extraction 

approach, and capture time-dependent acoustic vocal-tract 

characteristics in human speech generation. This popular approach, 

however, ignores idiolect-based speaker information from word 

and phone N-grams, which have been shown to provide good 

speaker discriminative power [4,5]. Word and phone N-gram 

features have been used separately in the past, each with 

surprisingly good success. Word-conditioning of phone N-gram 

features is a logical follow-up to the previous approaches. 

 While speaker recognition systems have historically been 

text-independent, the use of word conditioning provides a method 

of relying on speech signal information from selected words which 

are rich in speaker characteristic information. This word-

conditioning introduces the advantages of text-dependence in a 

text-independent domain. An example of word conditioning is the 

word HMM system [2], where HMM models are built for a subset 

of words using low-level acoustic features (MFCCs). In this paper, 

we introduce an approach utilizing phone N-gram features 

constrained by a selected set of high-frequency words. 

 This paper is organized as follows: Section 2 describes the 

database. Section 3 describes preprocessing of speech, feature-

extraction for lattice and 1-best phone decodings, combination 

techniques for various word N-grams, and problems associated 

with the techniques. Section 4 describes target speaker model 

training and test-target pairs scoring. Section 5 describes 

experiments and results. Section 6 provides a summary and 

conclusion of our findings. 

 

2. DATA 

 

The training and test data are the SRE04, SRE05 and SRE06, 

which have been drawn from the MIXER corpus. MIXER is a 

conversation speech corpus, where two unfamiliar speakers speak 

for roughly 5 minutes. A conversation side (roughly 2.5 minutes) 

contains speech from one speaker only. 2,843 conversation sides 

are used for SRE04, 6,090 for SRE05, and 12,157 for SRE06. In 

addition, there are 7,336 trials for SRE04 (with 686 true speaker 

trials), 20,683 trials for SRE05 (with 2,072 true speaker trials), and 

17,547 trials for SRE06 (with 2,010 true speaker trials). Ten-

minute Fisher and five-minute Switchboard II English conversation 

sides (1,553 total) were used to provide the background model. 

Each speaker is represented in no more than one background 

conversation side. 

Target speaker models are trained using 8 conversation sides 

from the same target speaker. This provides better target speaker 

modeling than training on only one conversation side, especially 

since we are using SVMs and each training conversation is 

represented as one point in the high dimensional space. Thus, there 

are 8 positive and 1,553 negative training examples to train each 

target speaker model. 

 

3. FEATURE EXTRACTION 

 

3.1 Preprocessing 

 

We used the same preprocessing approach as in the non word-

conditioned phone N-grams system [5]. For a given conversation 

side, segments containing speech were extracted using a 

speech/non-speech detector, and word and open-loop phone 

recognition were performed using the DECIPHER recognizer [7], 

developed by SRI. Our version of DECIPHER uses gender-

dependent, 3-state hidden Markov models for openloop phone 

recognition. The Markov models were trained using mel-frequency 

cepstral coefficient features of order 13 plus deltas and double 

deltas, with overall dimensionality of 39, on the Switchboard I 

corpus [5,7]. Phone recognition was performed on segments 

containing speech only. 

 

3.3 Phone N-gram feature extraction from phone lattices 
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A phone lattice decoding for a voiced segment of a conversation 

side, produced by the recognizer, is a set of nodes and edges 

denoting the probability of occurrence of particular phones at 

particular time segments of a conversation side. Each edge 

represents a phone and an acoustic probability for its occurrence; 

each node at the beginning and end of each edge represents a time 

instance. For each selected word N-gram, phone lattice segments 

containing edges with at least one node within word N-gram time 

boundaries are kept for feature extraction, as shown in Fig. 1.  

 The features used are the relative frequencies of phone N-

grams within the extracted lattice segments. Phone N-grams are 

phone sequences along N consecutive lattice edges, where N 

denotes the order. Phone N-gram feature values, p(Ni|W,C), 

represent the relative frequency of a phone N-gram Ni given a 

conversation side C and word N-gram W. They are computed as 

follows: 
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where p(Sj|W,C) is the posterior probability of a phone sequence Sj 

given a word N-gram and conversation side, count(Ni|Sj) is the 

number of occurrences of Ni in the phone sequence S, and 

count(W|C) is the number of occurrences of W in conversation side 

C. If there are multiple occurrences of a word N-gram in a 

conversation side, the phone N-gram counts are averaged over the 

occurrences. A feature vector is a vector of relative frequencies 

indexed by the corresponding phone N-gram. 

Fig. 1 provides a summary of the process of phone N-gram 

feature extraction from phone lattices. The term p(Sj|W,C) (where 

W represents WORD2) is computed using the forward-backward 

Viterbi algorithm involving the nodes and edges of the lattice 

containing Sj. Because the only phones of interest are ones 

belonging to the desired word (i.e. word-conditioning), phones 

belonging to edges between the very first node of the lattice and 

the nodes at the beginning of the segment corresponding to the 

desired word (the nodes and edges shown in gray under WORD2), 

and also phones belonging to edges between the end of the 

segment and the very last node, are irrelevant; only their 

probabilities are used in the algorithm. As a good estimate of the 

probabilities of paths connecting the first and last nodes of the 

lattice to the boundary nodes of the desired segment, only paths 

with the highest probabilities (computed via Dijkstra’s algorithm) 

are considered and used in the Viterbi algorithm. A feature vector 

consists of all phone N-grams for a particular word N-gram of a 

conversation side. 

 

3.4 Feature extraction from 1-best recognition hypothesis 

 

A 1-best phone decoding consists of the most probable path in the 

lattice decoding. Lattice edges along this path with one of two 

nodes within word N-gram time boundaries are extracted, and 

phone N-gram feature counts are computed as follows: 

 

p1 best (Ni |W ,C) =
count(Ni |W ,C)

count(W |C)
               (2) 

 
where count(Ni|W,C) is the number of times phone N-gram Ni 

occurs given word N-gram W and conversation side C.  

 

3.5 Feature- and score-level combination 

 

Different word N-grams constraining subsets of phones N-grams 

can be used as speaker recognition systems, where each system 

uses only the phone N-grams that it constrains. Combination of 

these “word systems” at the feature level requires a concatenation 

of feature vectors for multiple word N-grams of a conversation 

side, repeated for all conversation sides. In the final feature 

vectors, each phone N-gram is flagged with its appropriate word 

N-gram tag. Training, testing and scoring is completed on these 

feature vectors. Fig. 2 illustrates this process. Because not all word 

N-grams appear in all conversation sides, phone N-gram data for a 

particular word N-gram in a conversation side may not exist. They 

are assigned feature values of 0, as shown in Fig. 2. This is 

undesirable since the values of 0 do not accurately reflect phone N-

gram counts should the word N-gram exist in the conversation 

side. One way to address this missing data problem is to choose 

high frequency word N-grams, with the majority of conversation 

sides containing most or all of the N-grams. An alternative method 

is to substitute existing values for the missing values. 

 
 

Fig. 1. Word N-gram-conditioned phone N-gram feature extraction 

from phone lattices 
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Word N-gram systems can also be combined at the score level. 

One method is to use a neural network with two hidden nodes and 

one hidden layer, implemented via the Lnknet package [8]. Score-

level combination requires each word N-gram system to be 

individually trained, tested, and scored before combination, as 

shown in Fig. 3 (note that scores of each system affects its weight 

in combination). 

 

 
Fig. 2. Feature-level combination of multiple word N-grams 

 

 

 
Fig. 3. Score-level combination of multiple word N-grams 

 

 

4. TRAINING AND SCORING 

 
The support vector machine (SVM) with linear kernel is used for 

target speaker model training and speaker model-test utterance 

scoring. The kernel is obtained from Campbell et al [3]. The 

background model conversation sides serve as negative training 

examples, while target speaker model conversation sides provide 

positive training examples. Each conversation side is one data 

point in the high-dimensional space. The SVM
light

 software is used 

for training and scoring [6]. 

 

5. EXPERIMENTS AND RESULTS 

 

Feature-level combination on SRE05 using 1-best phone decoding 

is performed on a subset of word bigrams (3,889 total) which 

appear more than 30 times in the 1,553 background conversation 

sides. Results are shown in Table 1. Word bigrams used for 

combination are selected based on their individual EERs for 

NIST’s 2004 evaluation corpus (SRE04), with at least 10 true 

speaker tokens in each “word system.” (Note that the individual 

EERs are computed using the procedure explained in sections 3 

and 4, except with only one desired word.) A threshold is applied 

to phone N-gram features, keeping only those with counts greater 

than 20 in the accumulation of the background conversation sides. 

Phone N-grams of order 1 and orders 1, 2, and 3, corresponding to 

each bigram, are experimented with. A bigram is used in 

combination for a particular phone N-gram order if its EER falls 

below a certain percentage using those phone N-grams (as shown 

in Table 1). As with the approach by Hatch et al., the SVM
light

 

software with c=1 was used for SVM training and scoring, and a 

bias term was included in the SVM kernel [5].  

Results show that EER is correlated with the number of word 

bigrams combined, and the type of phone N-grams used (order 1 

vs. 1, 2, and 3) has little impact. The missing data problem is 

evident since EER is worse when combining word bigrams with 

lower individual EER, which have fewer word bigram 

observations. This results in larger chunks of missing data in 

feature vectors.  

To address the missing data problem, feature values 

corresponding to a particular word bigram in background 

conversation sides are summed and divided by the number of 

background conversation sides in which the word bigram exists. 

These averaged values replace missing feature values for the 

particular word bigram in all conversation sides. However, as 

shown in table 1, this approach only marginally improves EER for 

experiments with missing data. It is likely that substituting missing 

feature values with background values makes conversation sides 

difficult to distinguish from background conversation sides, from a 

SVM standpoint. In addition, the absence of a word from a 

conversation side carries speaker discriminative information, 

which is lost after substitution. 

A second way to handle the missing data problem is to select 

word N-grams that are unlikely to be missing from any 

conversation side. Specifically, word unigrams with more than 

4,000 appearances in the background conversation sides are 

combined at the feature and score level (via Lnknet), with 1-best 

and phone lattice decoding. These 52 word unigrams occupy 43% 

of total conversation time among the 6,090 conversation sides of 

SRE05. Interestingly, they represent only ~0.5% of tokens in the 

corpus. Lnknet was trained on results from SRE04. 

Results on SRE05 are shown in Table 2. Approximately 90 

percent of background conversation sides have at least 44 of the 

following 52 word unigrams: a, about, all, and, are, be, because, 

but, do, for, get, have, i, if, in, is, it, just, know, like, mean, my, no, 

not, of, oh, okay, on, one, or, people, really, right, so, that, the, 

there, they, think, this, to, uh, uhhuh, um, was, we, well, what, with, 

would, yeah, you.  

The results improve dramatically using the 52 unigrams with 

phone lattice decoding and feature-level combination (compare 
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Table 2 to Table 1). Each unigram has an EER less than 50% in 

SRE04, computed using phone N-gram features of order 1, 2, and 

3 with phone lattice decoding. Feature-level combination using 

phone N-gram features of order 1, 2, and 3 is superior to 

combination using those with order 1, as one would expect. Score-

level combination for the 52 unigrams is inferior to feature-level 

combination, while the richer phone lattice decoding is superior to 

1-best phone decoding, as expected. Note that the top ~33,000 

features are used for feature-level combination, which led to the 

best results with EER of 5.0%. 

 

 

 Table 1. Feature-level combination results using 1-best phone 

decoding on SRE05 

 

 

Table 2. Combination using 52 common word unigrams on SRE05 

 

 

Table 3. System fusion results 

 

System fusion with a GMM-based system [7] and a non word-

conditioned phone N-grams system [5] is performed on SRE05 and 

SRE06 using 6,117 Fisher and Switchboard 2 background 

conversation sides, and the fusion weights are trained on SRE04. 

Feature-level combination (using the top ~33,000 features) for the 

52 word unigrams using phone unigram, bigram, and trigram 

features is performed for the word-conditioned (WC) phone N-

grams system. Systems are fused via score level combination, and 

Tnorm was applied [1]. Tnorm was trained using 249 1-

conversation side target speaker models from the Fisher corpus. 

Results are shown in table 3. 

The WC phone N-grams system (4.7% EER on both SRE05 

and SRE06) achieves a 17.7% improvement on SRE05 and a 

26.6% improvement on SRE06 compared to the non WC phone N-

grams system (5.7% EER on SRE05 and 6.4% EER on SRE06). 

The system also achieves a 17.5% improvement on SRE05 and 

36.4% improvement on SRE06 compared to the non WC phone N-

grams system when both systems are combined with the baseline 

GMM-based system. Improvements over the non WC phone N-

grams system may be because the 52 unigrams represent a more 

clear and concise characterization of variability amongst speakers 

than the set of all words in conversation sides. The combination of 

word-conditioned and non word-conditioned phone N-grams 

systems has slightly lower EER than each system alone on SRE05, 

despite similarities in approach. 

 

6. CONCLUSION 

 

We have extended the state of the art of using phone N-grams for 

speaker recognition by application of word-conditioning. The 

word-conditioned phone N-grams system contributes more to error 

reduction than its non word-conditioned counterpart. Our best 

system demonstrates the high speaker discriminative power of just 

52 word unigrams using phone lattice N-gram features. Alternative 

approaches to handling the missing data problem and other 

methods of system combination can be explored in the future. 
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Filled 

missin

g data 

Bigram 

EER 

Phone 

N-gram 

features 

# of word 

bigrams 

combined 

EER 

N < 50% order 1 882 15.8% 

N < 50% order 1,2,3 855 16.0% 

Y < 50% order 1,2,3 855 15.3% 

N < 40% order 1,2,3 150 25.4% 

Phone 

decoding 

Phone 

N-gram features 

Word N-gram 

Combination 

EER 

lattice order 1 Feature-level 6.5% 

lattice order 1,2,3 Feature-level 5.0% 

1-best order 1,2,3 Feature-level 10.2% 

lattice order 1,2,3 Score-level 20.5% 

Systems combination: SRE05 

EER  

SRE06 

EER 

WC phone N-grams 4.7% 4.7% 

Phone N-grams 5.7% 6.4% 

GMM 5.1% 5.2% 

GMM + phone N-grams 4.0% 4.4% 

GMM + WC phone N-grams 3.3% 2.8% 

WC phone N-grams + phone N-grams 4.5% 4.8% 

WC phone N-grams + phone N-grams + 

GMM 

3.3% 3.3% 
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