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ABSTRACT

A multimodal person recognition architecture has been
developed for the purpose of improving overall recognition
performance and for addressing channel-specific
performance shortfalls. ~ This multimodal architecture
includes the fusion of a face recognition system with the
MIT/LL GMM/UBM speaker recognition architecture. This
architecture exploits the complementary and redundant
nature of the face and speech modalities. The resulting
multimodal architecture has been evaluated on the XM2VTS
corpus using the Lausanne open set verification protocols,
and demonstrates excellent recognition performance. The
multimodal architecture also exhibits strong recognition
performance gains over the performance of the individual
modalities.

Index Terms— Multimodal Person Recognition
1. INTRODUCTION

Multimodal audio-visual approaches have been investigated
for a broad range of speech technology applications,
including speech recognition [5], speaker recognition [6,
13], speech segmentation [7], and speech enhancement [8].
The allure of combining these specific modalities is strongly
motivated by both the complementary and redundant natures
of the visible articulators and resulting speech. This
complementary nature is primarily through visual cues that
can aid a listener in tracking the acoustical signal. An
example of the redundant nature of these channels is the well
known McGurk effect [9]. Reviews of person recognition
using audio and visual modalities are available in [6, 13].
Visual person recognition approaches fall into one of
two categories: model-based or appearance-based. In
model-based approaches various aspects of the face (i.e.
height and width of lips) are estimated and serve as a source

for the feature set. These algorithms are typically limited by
the quality of the feature estimates. Appearance-based
approaches [15] implement a general representation of the
face based on the original image. The inherent challenge of
this approach is the “curse of dimensionality”, necessitating
methods for reducing facial image to a representative low
dimensional space. This challenge was addressed by Turk
and Pentland [1] in the 90’s utilizing a Principal Component
Analysis (PCA)-based approach popularly known as
Eigenfaces. Increasingly impressive face recognition results
have been demonstrated by FEigenfaces, as well as
Fisherfaces [10] which is a Linear Discriminant Analysis
(LDA) extension to Eigenfaces, as well as Kernel extensions
to both of these methods [11].

While much work has been done in audio-visual person
recognition, it is noteworthy that there has been little
evaluation on open corpora using established testing criteria.
This differs from the face recognition and speaker
recognition communities where formal evaluations are
common with standard testing protocols. Comparing results
is challenging due to this lack of common testing standards.

The remaining sections of the paper are organized as
follows. Section 2 provides an overview of the multimodal
recognition task. Section 3 will provide a brief overview of
the audio recognition task. Section 4 provides an overview
of the visual recognition task. A brief overview of the
XM2VTS Multimodal Corpus and corresponding Lausanne
protocols are discussed in Section 5. While these protocols
have been widely used for face verification, this is the first
known instance of their use for multimodal verification. The
experimental results are in Section 6 and concluding remarks
are in Section 7.

2. MULTIMODAL RECOGNITION

Figure 1 illustrates a multimodal recognition engine that is
composed of a preprocessing stage and a recognition engine.
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Figure 1 Multimodal Person Recognition Architecture

Only the Image and Audio modalities are evaluated in this
paper. The preprocessing stage handles the detection and
channel normalization for each of the respective input
modalities: video, image, or audio. For audio files this
includes speech activity detection (SAD). Audio channel
normalization may occur either before (i.e. noise
preprocessing) or after (i.e. RASTA) feature extraction as
seen in Figure 1. For images and video this includes the
detection [14] (and perhaps tracking) of the face as well as
the normalization of the face relative to illumination, pose,
and perhaps expression. The recognition engine extracts the
relevant features from the respective channels and compares
the features to an existing target model during the
classification process. The model is generated in an offline
process utilizing a set of training data.

A description of the feature sets used for each input
modality will be discussed in the following sections.
Separate scores are calculated for each mode and these are
fused in a late integration process. Late integration has been
shown to be highly successful for the speaker recognition
task. The score fusion is calculated using a single stage
perceptron with a log sigmoid output layer. Note that the
output of such a network is well known to be a good
representation of the posterior probability of target match.

3. AUDIO RECOGNITION
The MIT/LL speaker recognition architecture [4] utilizes a

Gaussian Mixture Model (GMM) that statistically represents
the features for each of the target speakers. The underlying

---------------------------

features are cepstral features, as well as delta cepstral
features. There is one GMM model per target and a
Universal Background Model (UBM) that is used as an
initial model from which each speaker model is trained by
adapting the means of the Gaussians. The UBM is also used
during testing as an alternate hypothesis whose score is
compared to the target speaker model’s score to create a
likelihood ratio test. The UBM is typically generated with
speech material collected across channel types so that all
channels are represented.

4. VISUAL RECOGNITION

Two visual recognition engines are utilized in this paper:
Eigenfaces [1] and Fisherfaces [10]. Both of these methods
require a preprocessing stage wherein faces are detected and
normalized. In the channel normalization step the images
are uniformly resized, reoriented, and gray level histogram
equalized to help address variations in pose and
illumination.

The Eigenfaces approach, based on PCA, is an optimal
linear space for representing faces. It vectorizes all of the
normalized images (x,) and calculates a mean face (Xg).
This mean face is subtracted from each of the normalized
faces (Ap=Xp — Xg) to form the matrix A. Normally, for
PCA a sample covariance (S = A AT) would be calculated
at this point whose eigenvectors ® would form the basis of
the face space. Alternatively, Turk and Pentland suggest the
formation of a lower dimensional sample covariance (S =
ATA) whose eigenvectors ® are premultiplied (®p= A®P).
This mathematical trick results in an equally effective basis
for representing faces without the computational load of
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doing an eigen-decomposition of the larger sample
covariance. The columns of ®p form a basis for the
Eigenfaces face space whose origin is the mean face .
During the testing stage any normalized image can be
projected into the face space as follows: y, = ®r (x, — Xo).

The Fishervectors approach, based on LDA, is an
optimal linear space for discriminating faces. It utilizes the
generation of the Eigenfaces of the respective images as
described in the previous paragraph. The within class
scatter matrix (S,,) and the between class scatter matrix (Sy)
are calculated from the appropriate Eigenfaces. The goal is
to solve a cost function for maximizing the feature space
separation between classes relative to the separation within
classes, which corresponds to solving the generalized
eigenvalue problem (S, x = S, x A). These Fishervectors
can then be generated by projecting the appropriate
Eigenvectors into the space defined by the eigenvector
solution to the generalized eigenvalue problem.

Unlike the speaker recognition engine, there is no
underlying statistical model for representing a target in this
testing paradigm. Instead, there is an Eigenface / Fisherface
vector corresponding to each image in the training set.
Scores are obtained by directly comparing the estimated
image vector to a target template. This results in multiple
scores for each evaluated image (as many as there are
images in the train set). Several popular scoring approaches
for calculating these scores include the Euclidean metric,
normalized correlation, and the Mahalanobis distance. The
normalized correlation was used for our architecture.

5. XM2VTS MULTIMODAL CORPUS

The XM2VTS Audio Video Corpus [3] was collected at U.
K. Surrey within the M2VTS (Multi-Modal Verification for
Teleservices and Security Applications) project. It is a
multimodal database consisting of four sessions on 295
subjects over a 4 month period. Each session consists of
several audio-video sequences (A phonetically balanced
sentence and several numeric sequences), a head rotation
shot, and a static image shot. The audio is clean 16-bit 32
kHz, while the video is also clean and recorded at 25 Hz.

The XM2VTS Corpus has been widely used for
evaluating recognition technology. This corpus consists of
multimedia content for 295 subjects collected in 4 sessions
over a period of 4 months. Two open set verification
protocols [3], known as the Lausanne Protocols (I and II),
were suggested for use on the XM2VTS Corpus, and have
been utilized for several face verification competitions
(ICPR 2000, AVBPA 2004, ICBA 2006). These
verification protocols split the 295 XM2VTS subjects into
200 clients and 75 imposters that are further refined into
train, test, and evaluation sets (as a function of session).
These protocols will be used for the experimental results in
the next section.

6. EXPERIMENT

The XM2VTS Corpus has been processed with this
multimodal person recognition engine utilizing Lausanne
Protocols I and II [3]. The audio material was extracted
from the audio-video sequences and concatenated together
resulting in about 20 seconds of data per subject per session.
The visual material corresponded to the frontal static images
collected for each session. The faces were manually
registered.

The individual mode scores were fused via a single
layer perceptron trained on the evaluation data. The results
are illustrated with Detection Error Tradeoff (DET) plots in
Figures 2 and 3 for Lausanne Protocols I and II respectively.
The DET performance for the audio and image recognition
approaches is quite similar. Note that the image recognition
results are a result of fusing the Eigenface and Fisherface
image recognition scores. What is quite dramatic is the
recognition performance improvement obtained by fusing
the scores from the visual and audio recognition approaches.
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Figure 2 DET Results for XM2VTS Multimodal Corpus
for Test Set of Lausanne Protocol I

The Equal Error Rates (EER) for each of the modes,
including Eigenfaces and Fisherfaces alone, for the
evaluation and test corpus are shown in Table 1. The EER
describes the crossover point where the probability of miss
and probability of false alarm are equal. As expected,
Fisherfaces achieves a higher level of performance over the
Eigenfaces approach. It is interesting to note, however, that
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there is an obvious improvement in EER performance by
fusing the Eigenfaces and Fisherfaces scores.
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Figure 3 DET Results for XM2VTS Multimodal Corpus
for Test Set of Lausanne Protocol I1

Lausanne [ Lausanne [ Lausanne II Lausanne II
Evaluate (%) Test (%) Evaluate (%) Test (%)
Eigenfaces 4.33 4.00 3.25 4.00
Fisherfaces 3.17 3.25 2.75 2.75
Image 3.00 2.81 2.50 2.23
Audio 1.67 2.00 1.57 2.00
Fusion 0.33 0.25 0.24 0.50

Table 1 EER Results for XM2VTS Multimodal Corpus

7. CONCLUDING REMARKS

A multimodal person recognition architecture has been
presented and evaluated on the XM2VTS Corpus using the
Lausanne Protocols. Significant recognition performance
gains were obtained through the fusion of an audio and a
visual modality over the performance of either modality
alone.

In previous unpublished work, the authors successfully
developed and evaluated an audio-video recognition engine
using the same audio recognition engine and a GMM/UBM
video recognition engine using the DCTs of the lip region.
Future work will include the integration of this video
recognition modality with the image and audio based
recognition modalities. Based on the current work, an
Eigenlip or Fisherlip approach to representing the lip or low
face region would be a more effective option for
representing the extracted features.
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