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ABSTRACT
This paper investigates the properties of a popular ROC vari-
ant - the Detection Error Trade-Off plot (DET). In particular,
we derive a set of conditions on the underlying probability
distributions to produce linear DET plots in a generalized set-
ting. We show that the linear DETs on a normal deviate scale
are not exclusively produced by normal distributions, how-
ever, that normal distributions do play an unique role in the
threshold behavior as one moves along the DET line. An in-
teresting connection between linear DETs and the Kullback-
Leibler divergence is also discussed.

Index Terms— DET, ROC, Detection, Kullback-Leibler
Divergence

1. INTRODUCTION

In detection systems, the Receiver Operating Characteristic
(ROC) analysis involves a trade-off between the False Alarm
and Miss error rates, and belongs to a traditional portfolio
of methods for performance assessment. A particular ROC
variant termed the Detection Error Trade-Off (DET), origi-
nally described by Swets [1], was introduced into the speaker
recognition community by Martin et al. [2]. where it has
found a wide-spread, virtually exclusive use, expanding to
related detection tasks, particularly due to its popularization
through the NIST speech technology evaluations [3].
Formally, an ROC chart is a set of operating points of a

detection system obtained by plotting the False Alarm Rate,
PFA ∈ [0, 1] (on the abscissa), and the Miss Rate, PM ∈
[0, 1] (on the ordinate).
The DET is an ROC plotted on non-linearly warped coor-

dinates, such that systems with normally distributed detection
scores will produce straight lines. The DET plot generally of-
fers a better viewability and assessment of systems with close-
to-normal score distributions [2]. The axes are warped by a
normal deviate function φ−1, which is an inverse of

φ(P ) =

P∫
−∞

1√
2π

e−x2/2dx
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It is known that if the two score populations, i.e. the tar-
gets and the impostors, are normally distributed, the DET
curve will be a straight line. Suppose the impostor popula-
tion is from a Gaussian with μ1, σ1, and the target population
is from a Gaussian with μ2, σ2. Then, the two error types as
functions of a threshold t are

PM (t) =

t∫
−∞

1√
2πσ2

2

e−
1

2
(x−μ2)

2/σ2

2 = φ

(
t− μ2

σ2

)

PFA(t) =

∞∫
t

1√
2πσ2

1

e−
1

2
(x−μ1)

2/σ2

1 = φ

(
μ1 − t

σ1

)

Taking the inverse

t− μ2

σ2
= φ−1 (PM ) and

μ1 − t

σ1
= φ−1 (PFA)

and equating by t

φ−1 (PM ) = −σ1

σ2
φ−1 (PFA) +

μ1 − μ2

σ2
(1)

we obtain a linear relationship on the DET chart (whose axes
are warped by φ−1 as stated above).
Linear or close-to-linear plots are observed in practice and

the normal assumption is often appropriate. However, an ob-
served DET linearity tempts one to falsely conclude that the
underlying score distributions must be normal. Even the clas-
sic reference paper [2] does not resist to state: “If the resulting
curves are straight lines, then this provides visual con rma-
tion that the underlying likelihood distributions from the sys-
tem are normal.”. In this paper we present a set of general
results regarding line-producing distributions and, as a corol-
lary, show that in fact a variety of non-Gaussian distributions
will, too, produce linear DETs. However, Gaussianity, as will
be shown, does play a unique role in linear DETs: it is the
sole distribution attaining a linear threshold behavior as one
moves along the DET line.
The paper is organized as follows: Based on the de ni-

tions given in Section 2, we state general conditions on line-
producing distributions in Section 3. Section 4 is concerned
with the linear behavior of the errors as a function of the de-
tection threshold. Finally, an interesting relationship between
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the linear DETs and the symmetric Kullback-Leibler diver-
gence is discussed in Section 5.

2. PRELIMINARIES

Notation Let R� = R ∪ {−∞, +∞}.
De nition A probability distribution P is a function satisfy-
ing the following properties: a) P : R

� −→ [0, 1] b) is non-
decreasing, c) is continuous on R

�, d) has continuous deriva-
tive on R \ N with N a nite (possibly empty) set of points,
e) P (−∞) = 0 and P (+∞) = 1.

Remark The distribution function de ned above is often re-
ferred to as cumulative density function.

Furthermore, let PI(t) denote the probability distribution of
an impostor score being < t, and PT (t) that of a target score
being < t. Hence, the probability of a miss error is PM (t) =
PT (t), and of false alarm error is PFA(t) = 1−PI(t), with t
being the detection threshold.

De nition F is an axis warping function if it satis es the fol-
lowing properties: a) F is a one-to-onemappingF : [0, 1] −→
R

�, b) increasing on [0, 1], c) has continuous derivative on
(0, 1) \N , where N is a nite set d) ∀x ∈ (0, 1) : F (x) ∈ R

, e) F (1 − x) = −F (x), f) F (1) = ∞, F (0) = −∞, g) is
continuous.

Remark It is easy to show that f) and g) follow from a)-e).

It is easy to show that any valid F has an inverse F−1 with
the properties as follows: a) it is a continuous one-to-one
mapping F−1 : R

� −→ [0, 1], b) increasing on R
�, c) with

derivative continuous onR\N , whereN is nite, d) ∀x ∈ R :
F−1(x) ∈ (0, 1) e) 1−F−1(p) = F−1(−p) f) F−1(−∞) =
0 and F−1(∞) = 1.

De nition An F -axis system is an ROC coordinate system in
which both axes are identically warped by a scaling function
F .

Keeping the axis warping function general allows for deriving
results for a variety of axis systems, noting that for the stan-
dard DET chart, i.e. the normal deviate scaling: F ≡ φ−1,
and for the traditional ROC chart: F (x) = x.

3. LINE-PRODUCING DISTRIBUTIONS

Proposition 3.1 In a given F -axis system, if PI is any arbi-
trary impostor distribution function and a linear DET curve
is produced, then the corresponding target function is given
by

PT (t) = F−1(aF (PI(t)) + b), (2)
∀t ∈ R

�, a > 0, a, b ∈ R

Moreover, PT de ned this way is a valid probability distribu-
tion whenever PI is.

Proof If the DET should be a line the following must hold

F (PM (t)) = −aF (PFA(t)) + b ∀t ∈ R
�

or
PT (t) = F−1(−aF (1− PI(t)) + b)

and due to symmetry

PT (t) = F−1(aF (PI(t)) + b).

thus obtaining Eq. 2. To prove that for any given valid PI

(and F ), a PT is a valid distribution we consider that
a) Rng(F−1) = [0, 1] and Dom(PI) = R

�.
b) PT is non-decreasing due to PI being non-decreasing, F
and F−1 being increasing, and a > 0.
c) composition of continuous functions on R is continuous,
and for ±∞ F−1 must go to 0 or 1.
d) derivative of PT is a multiplication of terms consisting of
zeroth and rst derivative of PI , F and F−1, which are up to
a nite number of points continuous.
e) PT (∞) = F−1(aF (PI(∞)) + b) = F−1(aF (1) + b) =
F−1(a∞ + b) = F−1(a∞ + b) = F−1(∞) = 1. Similarly
for−∞.
Hence, PT is a valid distribution function.

The Proposition 3.1 shows that there is a multitude of dis-
tributions producing linear DETs. We only need to choose
any valid PI to obtain a corresponding PT that will yield a
linear DET. Note that the resulting functions PI and PT may
not necessarily be from the same family (see example in Sec-
tion 3.1).

Proposition 3.2 For any c1, c2, d1, d2 ∈ R andPI(t) = F−1

(c1t + d1) the following holds: PT (t) = F−1(c2t + d2) iff
the DET plot is a line.

Proof DET plot is a line iff PT (t) = F−1(aF (PI(t)) +
b) iff PT (t) = F−1(aF (F−1(c1t + d1)) + b) iff PT (t) =
F−1(ac1t + ad1 + b), where c2 = ac1 and d2 = ad1 + b.

Remark In propositions 3.1 and 3.2 PI and PT can be inter-
changed.

Proposition 3.2 tells us that if one population is known to dis-
tribute as the inverse of the scaling function F (e.g. normally
for F ≡ φ−1), and we observe a linear curve, then it follows
that the other population must also distribute as F−1.

3.1. Example of different distributions yielding a DET line

In a rst example, we choose the inverse sigmoid function as
our warping system (by this we replace the Gaussian case, in
which, unfortunately, the function φ−1 has no closed form)

F (P ) = ln
P

1− P
(3)

F−1(t) =
1

1 + e−t
(4)
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Suppose 1− PFA = PI ∼ linear:

PI(t) =

⎧⎨
⎩

t−tmin

tmax−tmin
, tmin ≤ t ≤ tmax

0 , t < tmin

1 , t > tmax

(5)

then it follows from Eq. 2, that

PM (t) = F−1

(
a ln

PI(t)

1− PI(t)
+ b

)

=
1

1 +
(

t−tmin

tmax−t

)
−a

/eb

, tmin < t < tmax

and PM (t) = 0 for t ≤ tmin and PM (t) = 1 for t ≥ tmax.
For example with a = 2 and b = 0 we obtain the rational
function

PM (t) =
t2 − 2ttmin + tmin

2

2t2 − 2t(tmax + tmin) + tmax
2 + tmin

2

which is in general nonlinear for tmin < t < tmax, i.e. PI

and PM are different.
To illustrate the Proposition 3.2 in this axis system, take

PI(t) =
1

1 + e
−

“
t−μ1

σ1

” ∼ sigmoid

then according to Eq. 2

PM (t) = F−1

(
a ln

PI(t)

1− PI(t)
+ b

)

=
1

1 + e

h
−a′

“
t−μ1

σ1

”
+b′

i ∼ sigmoid (6)

In a second example, we return to the normal deviate scale
F = φ−1. By choosing PI ∼ linear as de ned in Eq. 5, the
line-producing function PT is numerically approximated. We
then randomly generate positive and negative samples from
PT andPI , respectively (sample size 105). The resulting DET
plot along with histograms for two different settings of a, b
(from Eq. 2) is shown in Figure 1.

4. LINEAR THRESHOLD BEHAVIOR

By a linear threshold behavior (LTB) we understand that as
we continuously vary the threshold twemove along the (DET)
curve at a constant rate, i.e.

∂F (PFA(t))

∂t
= const (7)

∂F (PM (t))

∂t
= const (8)

Obviously on linear plots either condition implies the other.
The LTB can be of interest in practice as the sensitivity of a
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Fig. 1. Example of non-Gaussian and different target and
impostor distributions producing a linear DET (right) on the
standard deviate scale. Histograms (left) of the synthetically
generated impostors were drawn from a uniform source (with
a linear distribution function as in Eq. 5) and targets from
a density function obtained via numerical approximation of
φ(aφ−1(PI) + b). Set A has a = 1.9, b = −0.7 and Set B
has a = 1.5, b = −1.2.

detection system to threshold adjustments stays uniform along
the DET curve.
Proposition 4.1 For an F -scale system, the LTB is attained
iff both populations distribute as F−1 (up to domain scale
and shift).

Proof “⇒”: From Eq. 8
∂F (PM (t))

∂t
= k1

PM (t) = F−1 (k1t + k0)

Similarly forPFA we have PFA(t) = F−1 (k′1t + k′0). Using
the symmetry of F we get PI(t) = 1− PFA(t) =
F−1 (−k′1t− k′0), hence both populations are distributed the
same way, up to the scale and shift.
“⇐”: If we had PM (t) = F−1 (k1t + k0) and PI(t) =
F−1 (k′1t + k′0), then obviously

∂F (PM (t))

∂t
= const and

∂F (PFA(t))

∂t
= const

Proposition 4.1 lends the normal distribution a unique role
within the DET φ−1 axis system, namely that of exclusively
attaining the LTB along any linear DET curve.

4.1. Example of LTB in the sigmoid−1-axis system

Let F be again de ned as in (3)

F (P ) = ln
P

1− P

and we are again considering a linear plot, i.e.

F (PM (t)) = −a F (PFA(t)) + b = −a ln
PFA(t)

1− PFA(t)
+ b
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Now,

∂F (PM (t))

∂t
= −a

∂F (PFA)

∂PFA

∂PFA(t)

∂t

= −a
1

PFA(t) (1− PFA(t))

∂PFA(t)

∂t

= const

the last equality is required as per Eq. 8. Hence

∂PFA(t)

∂t
= a′ PFA(t) (1− PFA(t)) (9)

which is a rst-order differential equation and has a unique
functional solution

PFA(t) = α1
1

1 + α2eα3t
= 1− PI(t)

with α1, α2, α3 constants. In order for PI to be a distribution
function, α1 must equal 1, therefore

PI(t) ∼ sigmoid

but since we know from Proposition 3.2 that if one of the pop-
ulations in a sigmoid−1-scale system is sigmoid-distributed,
the second population must necessarily be also sigmoid-dis-
tributed to produce a linear curve (see Eq. 6) . Therefore
only sigmoid-distributed populations can, exclusively, attain
linear threshold behavior in the sigmoid−1-scale system, in
accordance with Proposition 4.1.

4.2. Traditional ROC

It is interesting to point out that the traditional ROC chart,
de ned by a linear axis system F (x) = x, has a linear plot
obtainable for any type of distribution if and only if PT ≡
PI . This follows from the fact that for F (x) = x the Eq. 2
becomes

PT (t) = aPI(t) + b

but since PI(−∞) = 0 and PI(+∞) = 1 it must hold that
a = 1 and b = 0 for any PI in order for PT to be a valid
distribution, i.e. PT ≡ PI . In other words a linear ROC plot
is observed only with systems working at an absolute chance
level.

5. DET RELATION TO THE SYMMETRIC
KULLBACK-LEIBLER (SKL) DIVERGENCE

We return to normally distributed populations. The SKL di-
vergence between two densities p1(x) and p2(x) is de ned
as

D(p1||p2) =

∫
X

p1(x) log
p1(x)

p2(x)
+p2(x) log

p2(x)

p1(x)
dx (10)

and speci cally for two Gaussians p1 ∼ N (μ1, σ1), and p2 ∼
N (μ2, σ2) the SKL has the following form

D(p1||p2) = (11)

=
1

2

(
σ2

1

σ2
2

+
σ2

2

σ2
1

+
(μ1 − μ2)

2

σ2
2

+
(μ1 − μ2)

2

σ2
1

)
− 1

=
1

2

(
R2 + R−2 + Δ2 + (Δ/R)2

)− 1 (12)

with

R = −σ1

σ2
(13)

Δ =
μ1 − μ2

σ2
(14)

representing the slope (R) and the bias (Δ) of a DET line as
per Eq. 1.
Comparing to the Eq. 1, we note that the Eq. 12 contains

the squared linear coef cients of two DET lines (in the φ−1-
axis system) that are mutually inverse, the rst de ned as in
Eq. 1

φ−1 (PM ) = −σ1

σ2
φ−1 (PFA) +

μ1 − μ2

σ2

= Rφ−1 (PFA) + Δ

and the second de ned as

φ−1 (PM ) = −σ2

σ1
φ−1 (PFA) +

μ1 − μ2

σ1

= R−1φ−1 (PFA) + Δ/R

which is its (linear) inverse.
From this observation it becomes clear that any system

optimization maximizing the SKL is essentially minimizing
the DET curve bias term, Δ, while keeping the slope un-
changed (due to the R2 + R−2 term). We refer the inter-
ested reader to [4] for a study of a criterion derived from Eq.
1 speci cally aiming at selective optimization of either the
slope or the bias term (or both) of the DET line to optimize
the detection system for speci c operating regions.
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