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ABSTRACT

This paper describes STBU 2006 speaker recognition sys-

tem, which performedwell in the NIST 2006 speaker recogni-

tion evaluation. STBU is consortium of 4 partners: Spescom

DataVoice (South Africa), TNO (Netherlands), BUT (Czech

Republic) and University of Stellenbosch (South Africa). The

primary system is a combination of three main kinds of sys-

tems: (1) GMM, with short-time MFCC or PLP features, (2)

GMM-SVM, using GMMmean supervectors as input and (3)

MLLR-SVM, usingMLLR speaker adaptation coefficients de-

rived from English LVCSR system. In this paper, we describe

these sub-systems and present results for each system alone

and in combination on the NIST Speaker Recognition Evalu-

ation (SRE) 2006 development and evaluation data sets.

Index Terms— Speaker recognition, GMM, SVM, eigen-
channel, NAP.

1. INTRODUCTION

The 2006 NIST Speaker Recognition (SRE-06) evaluation is

part of an ongoing series of yearly evaluations conducted by

NIST. These evaluations provide an important contribution to

the direction of research efforts and the calibration of tech-

nical capabilities. They are intended to be of interest to all

researchers working on the general problem of text indepen-

dent speaker recognition. For more information see:

http://www.nist.gov/speech/tests/spk/2006.
STBU consortiumwas created to encourage collaboration

between four institutes and to learn and share the technologies

and knowhow available between:

∗This work was partly supported by European projects AMIDA (IST-

033812) and Caretaker (FP6-027231), by Grant Agency of Czech Republic

under project No. 102/05/0278 and by Czech Ministry of Education under

project No. MSM0021630528. The hardware used in this work was par-

tially provided by CESNET under projects No. 119/2004, No. 162/2005 and

No. 201/2006. L. Burget was supported by Grant Agency of Czech Republic
under project No. GP102/06/383.

• Spescom DataVoice (SDV), South Africa

• TNO, Netherlands

• Brno University of Technology (BUT), Czech Republic

• University of Stellenbosch (SUN), South Africa

In this paper, we first describe sub-systems developed at

all four partners. We present the results of separate sub-systems

and the final submitted systems on both development and eval-

uation data sets.

2. SYSTEM DESCRIPTION

We used three main kinds of systems:

• GMM, with short-time MFCC or PLP features. (SDV,
BUT).

• GMM-SVM, using GMM mean supervectors as input.
(SDV, TNO, BUT, SUN).

• MLLR-SVM, using MLLR speaker adaptation coeffi-
cients derived from a speech recognizer (BUT, SUN).

All systems used linear supervector-space channel compen-

sation techniques. In the GMM case (BUT), this technique

is referred to as eigen-channel MAP-adaptation. In the SVM

case, it is referred to as NAP (nuisance attribute projection).

In all cases, we used SRE 2004 and 2005 data to derive these

adaptation coefficients or projection matrices.

2.1. Eigen-channel GMM (BUT)
At first, speech/silence segmentation is performed by our Hun-

garian phoneme recognizer [1], where all phoneme classes are

linked to ‘speech’ class.

12 MFCC coefficients plus C0 are computed and cep-

stral mean subtraction and short time gaussianization over

300 frames are applied. RASTA filtering of the features fol-

lows. First, second and third order derivatives computed over

5 frames are appended to each feature vector, which results in

dimensionality 52. HLDA [2] (where individual UBM mix-

ture components are considered as classes) is used to decorre-

late the features and reduce the dimensionality from 52 to 39.
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Feature mapping [3] with 14 models adapted from UBM

for different conditions is used: 6 models were adapted for 3

channels (cell, cord, stnd) and 2 genders given the labels from

2004 test data. Remaining 8 models were initially adapted for

4 channels (cdma, cord, elec, gsmc) and 2 genders on labels

obtained from TNO’s channel recognition output (for 2005

SRE). However, these 8 models were then used to iteratively

re-cluster the training data in unsupervised fashion and again

adapted using the new clustering (20 iteration lead to stable

clustering) [4].

GMM models adapted from UBM (2048 Gaussians) by

MAP-adaptationwere used to model the target speakers (only

means were adapted). Relevance factor 19 was used for the

MAP adaptation. For each trial, the target model and UBM

are adapted to the channel of test segment using eigen-channel

adaptation [5], wheremean super-vectorm is adapted toma =
m+V x. Here, V is eigen-channel space matrix estimated the

same way as for SVM-GMM system (see description below).

The weight vector x, which is considered to be normally dis-

tributed, is obtained by maximizing probability p(data|m +
V x)p(x) in one iteration of EM algorithm.

The final score for each trial is given by log likelihood

ratio: log p(data|ma) − log p(data|ubma), where data is
the test segment,ma is channel adapted target speaker model

and ubma is channel adapted UBM model.

Note, that for T-normalized version of GMM system, each

T-norm model is also adapted to the channel of tested seg-

ment.

2.2. GMM-SVM T-norm (BUT)

This system was based on GMMs but their means were clas-

sified by support-vector machines (SVM) [6].The feature ex-

traction and UBM training was done in the same way as above

in BUT eigen-channel GMM, but the UBM had only 512

Gaussian components and eigen-channel adaptation was not

applied. Each training, test and background segment is rep-

resented by means of its Gaussian components: each mean is

normalized by the corresponding standard deviation. All nor-

malized mean vectors of all GMM mixture components are

then concatenated to form one super-vector.

Nuisance attribute projection (NAP) [6, 7] is used to re-

move unwanted channel variability. NAP is based on eigen-

channel spaces given by eigenvectors of average within class

covariance matrix, where each class is represented by super-

vectors estimated on different segments spoken by the same

speaker (estimated on SRE 2004 data). We used first 40 NAP

eigenvectors. Also, rank normalization was used (the target

feature distribution was trained on impostor speakers data).

The SVM used to classify mean super-vectors uses lin-

ear kernel. It is trained on one positive example from the

target speaker. The negative examples are taken from 2002

SRE data (260 speakers) and from Fisher1 (2606 speakers).

In the testing, the trial is scored by the respective SVM. The

SVM training and scoring software was built with LibSVM

library [8].

2.3. MLLR-SVM (BUT)
In this system, the coefficients from constrained maximum

likelihood linear regression (CMLLR) and maximum likeli-

hood linear regression (MLLR) transforms, estimated in an

ASR system, are classified by SVMs [9].

The core of AMI system submitted to NIST RT 2005 [10]

was used in MLLR/CMMLR work. We did not generate our

own ASR transcriptions, but used the ASR output provided

by NIST. Since NIST did not provide pronunciation dictio-

nary, we used the AMI dictionary and we generated the miss-

ing pronunciations automatically. With this, we were able to

generate the triphone alignment and to apply VTLN.

CMLLR and MLLR transforms are trained for each spea-

ker. At first, CMLLR is trained with two classes (speech +

silence). On the top of it, MLLR with three classes (2 speech

classes obtained by automatic clustering on the ASR train-

ing data + silence) is estimated. Both CMLLR and MLLR

transform matrices were estimated as block-diagonal in 13-

coefficient wide streams (reminiscence from originally used

MFCCs).

The transform matrices from CMLLR speech classes and

MLLR are concatenated to one vector with 3 × 3 × 13 ×
13 + 3 × 39 = 1638 features. Fifteen NAP eigenvectors are
estimated on all usable SRE 2004 data (1-side, 3-side, 8-side

and 16-side) and rank normalization is trained on impostor

speakers.

The same SVM classification as above is used. The im-

postor data (310 speakers) was taken from NIST 2004, as this

also contains the ASR transcripts provided by NIST.

2.4. GMM-SVM T-norm (SUN)
This system used the GMMmeans from the BUT 512-mixture,

39-dimensional featureGMM system, which resulted in 19968-

dimensional supervectors. Each supervector dimension was

normalized by dividing by corresponding standard deviation

of the GMM UBM. LibSVM [8] C-classification with a lin-

ear kernel was used for all the SUN GMM-SVM and MLLR-

SVM systems. 2606 speakers from the Fisher database were

used as background speakers for the SVM. 300 from this set

are also used to train leave-one-out T-norm models.

Experiments on the 2005 data indicated that using 40 NAP

eigenvectors provided the best EER. 4433 segments from the

NIST 2004 Extended data, spoken by 301 speakers were used

to obtain a 19968 × 40 adaptation matrix. All supervectors
were adapted using this matrix.

2.5. MLLR-SVM (SUN)
Two variations of this system were implemented. In both

cases, CMLLR and MLLR transforms from the BUT sys-

tem were used: (1) CMLLR + 1 MLLR transform, (2) CM-

LLR + 2 MLLR transforms. The silence transform was dis-

carded in all cases. Each transform was made up of a block-

diagonal matrix containing three 13 × 13 matrices and a 39-
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dimensional bias vectors, yielding 546 components per trans-

form, or 1092- and 1638-dimensional supervectors. Rank

normalization was applied to the supervectors, with normal-

ization parameters estimated from 4266 segments from the

NIST 2004 Extended data, spoken by about 310 speakers.

The same data was used to train the SVM models.

T-norm was found to reduce performance, so it was not

utilized in this system.

For the MLLR system, experiments on the 2005 data indi-

cated that 15 NAP eigenvectors provided the best EER. 4159

segments from the NIST 2004 Extended data, spoken by 301

speakers. This yielded a 1092 × 15 or 1638× 15 adaptation
matrix. All supervectors were adapted using this matrix.

2.6. GMM-SVMT-norm, w/o unsupervised adapt. (TNO)

This is a system similar to the one described in section 2.2.

Using feature-warped normalized PLP features a 512-Gaussian

UBM was trained on 1640 channel-balanced speaker sides

from Switchboard and Fisher databases. A first channel com-

pensation using feature-mapping [3] was performed using 16

channels defined on the same databases. Training and test

segments were used to MAP adapt the UBM using means-

only, and these means were used as supervectors. A sec-

ond channel-compensation was applied using NAP, project-

ing out 40 dimensions of channel variability found in same-

speaker conversation sides of NIST SRE-2004 1c4w trials.

NAPped supervectors were used to train a linear-kernel SVM

for each training segment (using a background of the same

1640 UBM-speakers), and test scores were obtained by cal-

culating inner product of the test supervector with the folded

SVM model. SVM scores were T-normalized using all SRE-

2004 training speakers.

2.7. GMM-SVMT-norm, with unsupervised adapt. (TNO)

The system described in section 2.6 was also run in unsuper-

vised adaptation mode. Given a model speaker, all test seg-

ments were processed in order. If a T-normed score exceeded

a threshold a, the ‘current model’ GMM means supervector

was MAP adapted towards the current test segment using rel-

evance factor r, and a new SVM model was trained. The

parameters a = 4, r = 36 were chosen to optimize Cdet for

NIST SRE-2005.

2.8. GMM-SVM forward and reverse, T-norm (SDV)

In the fusion of systems, we found it advantageous to in-

clude in each fusion several very similar (but not identical)

GMM-SVM systems. These systems were different because

each was built by a different team, using different front-ends,

different development databases and somewhat different fla-

vors of the NAP channel compensation technique described

above. The GMM-SVM system put together by SDV had

the following distinguishing features: (i) It used a very ag-

gressive frame-selection procedure, retaining only about 25%

of the total segment duration, using only speech frames from

presumably strongly voiced syllable nuclei, detected by find-

ing local maxima of an appropriately filtered energy contour.

Moreover, frames where strong cross-talk between the two

telephone channels was detected (by comparing channel ener-

gies) were also rejected. (ii) This system was diversified into

two variants, namely (a) a forward system where SVM mod-
els were trained on train segments and then evaluated against

test segments; and (b) a reverse system, where the roles of
train and test segments were reversed.

3. SUBMISSION

We submitted three fusions of several sub-systems contributed

by partners. All submissions are run only on the primary eval-

uation task, both with and without unsupervised adaptation.

3.1. Fusion and Calibration
All systems were fused with linear logistic regression 1. We
had the complication that not all sub-systems were able to

contribute a score for each trial, because of failure to detect

speech in training or test segment, or lack of ASR transcrip-

tion. This necessitated a two step fusion strategy:

First, each system on its own was subjected to an affine

calibration transformation, also trained via logistic regression.

We used a logistic regression prior-weighting of 0.5 here. The

training data for this calibration were all trials that the system

could contribute out of the SRE 2005 (1c4w-1c4w) trials.

Next, scores for missing trials of each system were in-

serted as log-likelihood ratio (LLR) = 0. Now, all systems

had valid scores for all trials and could be fused, with linear

logistic regression, but this time using a prior-weighting of

0.0917 to best serve the NIST-CDET operating point.

Two of our systems: STBU-1 and STBU-2, relied purely

on the affine calibration afforded by the fusion step. For these

two systems, we did (somewhat arbitrarily) clip the LLRmag-

nitude to ±15. All that remained, was to threshold decisions
at an LLR threshold of log 9.9 and then to exponentiate LLR
scores to submit LR scores. STBU-3 followed the fusion

with a soft saturating non-linearity, called S-Cal, which is also

trained with logistic regression. For details on fusion and cal-

ibration, see the Focal toolkit 1.

3.2. Submission systems
STBU-1 - The unsupervised adaptation mode (u-mode) of
this system is our primary system. This is an 11-fold fusion

of: GMM-SVM forward, T-normed (SDV), GMM-SVM re-

verse, T-normed (SDV), Eigen-channel GMM (BUT), Eigen-

channel GMMT-normed (BUT), GMM-SVMT-normed (BUT),

MLLR-SVM (BUT), GMM-SVM T-normed (SUN), MLLR-

SVM v1 and v2 (SUN), GMM-SVM T-normed, without and

with unsupervised adaptation (TNO). For the non-adaptive (n-

mode) variant of this system, we simply omitted the last sub-

system.

1Tools for fusion and calibration of automatic speaker detection systems,
http://www.dsp.sun.ac.za/∼nbrummer/focal/.
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system SRE 2005 data SRE 2006 data
DCF EER DCF EER

GMM (BUT) .0174 3.88% .0178 3.44%
GMM-SVM (SUN) .0153 4.19% .0171 3.61%
GMM-SVM (BUT) .0158 4.66% .0185 3.71%
GMM-SVM-U (TNO) .0116 3.72% .0185 3.81%
GMM-SVM (TNO) .0178 5.17% .0190 4.10%
GMM-SVM-TF (SDV) .0221 6.05% .0227 4.91%
GMM-SVM-TR (SDV) .0220 6.10% .0238 5.18%
MLLR3-SVM (SUN) .0212 6.05% .0218 4.49%
MLLR3-SVM (BUT) .0196 6.17% .0220 4.78%
MLLR2-SVM (SUN) .0264 7.50% .0270 5.56%
STBU-1U .0070 2.98% .0132 2.26%
STBU-1 .0096 3.21% .0126 2.32%
STBU-2U .0073 3.17% .0132 2.26%
STBU-2 .0099 3.59% .0129 2.51%
STBU-3U .0132 2.26%
STBU-3 .0126 2.32%

Table 1. Results of the sub-systems and the submitted one on
primary condition: English trials.

system SRE 2005 data SRE 2006 data
DCF EER DCF EER

GMM (BUT) .0201 4.83% .0283 5.40%
GMM-SVM (TNO) .0192 5.77% .0285 6.04%
MLLR-SVM (BUT) .0224 7.15% .0327 7.57%
STBU-1 .0114 3.97% .0214 3.83%
STBU-1U .0085 3.50% .0208 3.30%

Table 2. The best performing sub-systems from each cate-
gory and the submitted results on all trials.

STBU-2 - This is the same as STBU-1 in all respects, ex-
cept that the eigen-channel GMM systems were omitted. This

makes this STBU-2 a pure fusion of SVM systems.

STBU-3 - This system is the same as STBU-1, except that
the above-mentioned S-Cal non-linearity was added as a fur-

ther calibration aid. We found very similar, but not identical,

S-Cal coefficients for the n and u modes. On our develop-

ment data, APE-curve analysis [11] showed that this brought

a significant improvement in quality of calibration.

4. RESULTS
Table 1 describes results on primary condition for develop-

ment data (SRE 2005) and for evaluation data (SRE 2006).

Results are reported for all sub-systems together with fused

results which are with and without unsupervised adaptation.

Table 2 describes results on all trials from development

and evaluation data. Only results of the best sub-system from

each category is presented.

5. CONCLUSION
Over a period of about 10 weeks, we developed completely

new systems and added new features to old ones. Over 600

emails were sent and finally we fused a selection of all our

sub-systems. Although we shared (wiki, email, sms) papers,

advices, ideas, formulas, code, supervectors, scores, there was

still a competition inside the STBU partners which paid off in

final results. From the experiments conducted during the eval-

uation it comes out that the choice of data for UBM, SVM-

background, NAP/eigen-channel, T-norm is important. We

found out, that independently developed systems (even with

the same structure) tend to fuse well, especially thanks to the

excellent Focal toolkit.

6. REFERENCES

[1] P. Schwarz, P. Matějka, and J. Černocký, “Hierarchical
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