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ABSTRACT

Many powerful methods for speaker recognition have been intro-
duced in recent years—high-level features, novel classifiers, and
channel compensation methods. A common arena for evaluating
these methods has been the NIST speaker recognition evaluation
(SRE). In the NIST SRE from 2002-2005, a popular approach was to
fuse multiple systems based upon cepstral features and different lin-
guistic tiers of high-level features. With enough enrollment data, this
approach produced dramatic error rate reductions and showed con-
ceptually that better performance was attainable. A drawback in this
approach is that many high-level systems were being run indepen-
dently requiring significant computational complexity and resources.
In 2006, MIT Lincoln Laboratory focused on a new system archi-
tecture which emphasized reduced complexity. This system was a
carefully selected mixture of high-level techniques, new classifier
methods, and novel channel compensation techniques. This new
system has excellent accuracy and has substantially reduced com-
plexity. The performance and computational aspects of the system
are detailed on a NIST 2006 SRE task.

Index Terms— speech processing, speaker recognition

1. INTRODUCTION

In recent years, several novel techniques have proven effective for
text-independent speaker recognition and have reduced error rates
dramatically. These techniques have addressed some of the main
issues in speaker recognition: speaker modeling, channel compen-
sation, and multiple linguistic cues to speaker identity. Our goal in
this paper is to discuss a successful fusion of these techniques and
tradeoffs in complexity in providing low error rates.

One key area of improvement in speaker recognition has been
in direct modeling of the spectral content of speech. These systems
have been a driver for low error rates in speaker recognition. Two
significant innovations have been the introduction of discriminative
techniques and advanced channel compensation methods. For dis-
criminative techniques, support vector machines (SVMs) were found
to fuse well with standard Gaussian mixture models [1]. For channel
compensation, methods such as latent factor analysis (LFA) [2] and
nuisance attribute projection (NAP) [3] have significantly reduced
error rates by supervised modeling of channel and session variation.

Another key area of improvement in speaker recognition has
been the fusion of high-level features. The 2002 JHU SuperSID
workshop [4] showed that significant reduction in speaker error rates
could be achieved by including features modeling high-level cues in
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speech (as opposed to low-level cepstral modeling). These cues in-
cluded information about prosody, phonotactics, idiolect, and dialog.

A drawback of the approaches that evolved from fusion of mul-
tiple cepstral and high-level systems is that many systems were run
independently without regard for system complexity. Also, focusing
on many high-level systems creates a system which may be vulner-
able to multilanguage variation. A re-evaluation of system compo-
nents in 2006 resulted in a streamlined system with an emphasis on
cepstral system performance and a single high-level tokenizer. This
approach proved powerful on several NIST SRE 2006 tasks.

We outline in this paper the systems, techniques, and experi-
mental results for the new systems. Section 2 describes the cepstral
systems. Section 3 described the high-level tokenizer and the mul-
tiple modeling methods from this system. Finally, in Section 5, we
describe experimental evaluation of the system on the NIST SRE
2006 data.

2. CEPSTRAL SYSTEMS
2.1. Front end processing for cepstral systems

The cepstral-based systems used a common set of speech activity
detection marks from a GMM-based speech activity detection (SAD)
system and an adaptive energy-based SAD.

Two sets of features are used for recognition—MFCCs and
LPCCs. For MFCCs, 19 cepstral coefficients and deltas were com-
puted to produce a 38 dimensional feature vector. The feature vector
stream is processed through SAD to eliminate non-speech vectors.
RASTA, CMS, and variance normalization are then applied to the
feature stream.

For linear prediction (LP) based processing, 18 LPCCs are
obtained from 12 LP coefficients extracted using the standard
Levinson-Durbin recursion. For LPCCs, windowing, frame rate,
RASTA, CMS, and variance normalization are performed in the
same manner as for MFCCs.

2.2. GMM ATNorm

The MITLL GMM UBM (universal background model) speaker de-
tection system is the basis for three of the cepstral systems imple-
mented for the 2006 NIST SRE. The first system, GMM ATNorm
(adaptive TNorm), uses a standard GMMUBM implementation with
MFCC features. The GMM ATNorm system MAP adapts a 2048
mixture component GMM UBM with a relevance factor of 16 [5].
ATNorm uses speaker-dependent cohort speakers in the TNorm cal-
culation [6]. The speaker-dependent TNorm set is determined by
the TNorm models which have the highest similarity to the speaker
model on a set of imposter utterances. Similarity is calculated by ar-
ranging the per utterance scores into a vector and using a Euclidean
distance to compare vectors. The closest set of p cohort models are
used for TNorm during run time; p was empirically chosen to be 55.
Cohorts are selected from the NIST SRE 2004 corpus.
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2.3. GMM LFA
The GMM latent factor analysis system (LFA) was based directly
on the work presented in [7]. MFCC features are used as inputs
to the system. The GMM LFA approach reduces session variabil-
ity through a low-dimensional subspace compensation in both train-
ing and testing. The session variability is modeled as an bias to the
GMM model means

mi(s) =m(s) + Ux(s) (1)

where mi(s) and m(s) are supervectors of stacked means GMM
means [8], and U is a low-rank matrix. The mi(s) is the super-
vector from the i-th session of talker s, whereasm(s) is the session
independent term of talker s. The GMMUBM supervectors are gen-
erated with a standard GMM system using MAP adaptation.
One of the challenges of implementing this system was select-

ing an appropriate algorithm from the many variations available for
training the hyperparameters and implementation of speaker enroll-
ment and verification [7, 8, 9]. Training of the U matrix is accom-
plished by finding the GMM supervectors on a per utterance basis for
a large corpus, forming delta vectors on a per speaker basis, and then
computing eigenvectors using the kernel trick [9, 10]. The data sets
used to train the low-rank transformation matrix are the Switchboard
II phase 1-5 corpora. Enrollment and verification are performed us-
ing the method of Vogt, et. al. [7]. This method involves computing
estimates of the channel factors x during both enrollment and verifi-
cation. Only one Gauss-Seidel type iteration is used in the estimation
process.
Z-norm followed by T-normalization was performed on the

scores. The Z-norm imposter test messages are drawn from the
Switchboard II phases 1-5 corpora. TNorm cohorts are drawn from
the SRE04 and Fisher corpora.

2.4. SVM GSV NAP
The SVM GMM supervector (GSV) system uses a novel kernel
based upon an approximation to the KL divergence. This method
is described in detail in [10]. Feature extraction is performed using
a standard MFCC front end.
The SVM GSV kernel is computed as follows. A 2048 mix-

ture GMM UBM is adapted using one MAP iteration on a per ut-
terance basis; the means of this GMM UBM are then stacked to
form a GMM supervector. The means in the supervector are then
weighted appropriately using the inverse covariance matrices and
mixture weights from the GMM UBM, see [10].
NAP is applied to the GMM supervectors to reduce session ef-

fects. NAP uses a linear projection, P , applied to the SVM expan-
sion space, b(x), to obtain a session compensated vector, Pb(x).
The effect of NAP is to excise dimensions from the SVM expansion
that are related to channel and session variability [3].
Training for the SVM GSV is performed by constructing a set

of pseudo-impostors from the LDC Fisher corpora to form a back-
ground. This background is labeled as −1 for SVM training, and
enrollment data for a speaker was labeled as +1. Training is then
performed using SVMTorch using pre-computed kernel inner prod-
ucts to reduce memory requirements.

2.5. SVM GLDS NAP
The SVMGLDS system uses the polynomial-based sequence kernel
described in [11]. A degree 3 basis of monomials is used for the
SVM expansion.
The SVM GLDS system uses a novel front end combination.

One front end is based upon MFCCs, and the other is based on
LPCCs as described in Section 2.1. Speaker models and scores

are calculated independently for both feature sets, and the resulting
scores are fused with a linear combination.
The novelty of the front end combination is based on the use

of NAP for session compensation. Before NAP, LPCC features
were found to have significantly higher error rates on common NIST
cross-channel tasks. By applying NAP to the SVM GLDS LPCC
system, error rates are decreased dramatically and this enabled ben-
eficial fusion with an SVM GLDS MFCC system.
NAP projection is trained on the Switchboard 2 phases 1-5 cor-

pora using session variability as the nuisance variable [3]. The SVM
system also requires a set of pseudo-impostors to use as a back-
ground for training speaker models; this background is taken from
the LDC Fisher corpora.

3. HIGH-LEVEL SYSTEMS

As mentioned in the introduction, one of our main goals was to
minimize system complexity through reduction of high-level sys-
tems. With this in mind, we explored fusion of multiple high-level
systems—pitch-based, phone-based, word-based—and found that
focusing on the output of a single high-level word system proved
the most powerful in terms of fusion performance and multiple sys-
tem possibilities. We used the BBN Byblos English conversational
telephone speech system [12] and its by-products for our high-level
speaker recognition system. From this one high-level tokenizer,
we were able to produce five different speaker recognition systems
which we detail in the following sections.

3.1. Byblos processing
We extracted word lattices and MLLR parameters using BBN’s By-
blos 1xRT recognizer trained with 2000+ hours of telephone speech.
Audio files are first segmented into chunks of 15 seconds or less
using a two-class HMM (speech/non-speech) trained on a small se-
lection (approx. four hours) of Switchboard II and Fisher data. Word
lattices are generated for each segment using Byblos (with SCTM +
VTLN and HLDA adaptation). MLLR parameters are obtained after
the un-adapted decode pass of the recognizer.

3.2. SVMMLLR NAP
We used the MLLR transforms from the BBN Byblos STT recog-
nizer as features for an SVM-based speaker recognition system. The
approach we took is based on the work described in [13] with a num-
ber of differences:

• We use two gender-independent regression classes and a
global transform for features. The final dimensionality of
each feature vector is 10980.

• We apply 0-1 normalization to the each feature vector using
statistics derived from the background model.

• We apply NAP as described in [3].

During testing T-norm is applied.

3.3. SVM word and LM word
Expected counts of n-grams from the lattices produced from the
adaptive decode pass of Byblos were calculated using SRI’s lan-
guage modeling tool [14]. These expected counts were used for both
the SVM word and N-gram word systems.

The SVMword system uses a kernel for comparing conversation
sides based upon methods from information retrieval. Sequences of
tokens are converted to a vector of probabilities of occurrences of
terms and co-occurrences of terms (bag of unigram and bag of bi-
grams). This method was first used in the NIST SRE 2003 evaluation
and is documented in [15].
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The SVM uses a weighted linear kernel. Individual entries in the
vector of probabilities are weighted by log(1/pbkg(ti)) + 1, where
pbkg(ti) is the probability of an n-gram over all conversations in the
background. The background set for training the SVM is derived
from the Fisher corpora. SVM training was performed using SVM
Light. Verification is performed using a linear kernel with the target
speaker model.

For standard language modeling scoring, LM word, expected
counts are used to compute joint probabilities for a speaker model
and a background using standard n-gram modeling. These probabil-
ities are then used to compute the cross perplexity between the test
message and the target and background models. The final score is the
ratio of the target model score and the background score. ZT-norm
was applied to these scores using models and non-target messages
trained from NIST SRE 04 data set.

3.4. BT word
We utilize models with a binary-decision tree (BT) structure to de-
scribe token sequences generated by the speakers in terms of the STT
transcripts. In essence, the BT models can be viewed as variable-
length N-grams with trainable context clustering and they were ap-
plied in speaker and language recognition previously [16, 17].

In this evaluation, the STT transcripts of the speaker speech were
used to generate sequences of tokens with an inventory defined as
the 512 top frequent words plus an additional ”other” class repre-
senting the remaining STT vocabulary. The tree structures in this
evaluation were trained using a fast flip-flop algorithm to minimize
the prediction entropy in terminal nodes as described in [18]. The
flip-flop sped up the search by a factor of 30, as compared to the
previous search algorithm, and allowed for building models with the
relatively sizable token vocabulary of 513 in an efficient manner.
First, on data from background speakers, a common BT model

was created resulting in a BT with about 15k terminal nodes using
up to 2 predictors (i.e. exploiting a context of 3 words at a time).
Subsequently, individual target speaker models were created using
an adaptive BT training algorithm from the common BT model as
described in [16].

The probability of a token at in a sequence generated by the
STT tokenizer and given a speaker hypothesis Sj , is retrieved from
the corresponding BT model in a way described above (traversing
the tree). In addition, a recursive parental-node smoothing is ap-
plied to the probability as described in [16]. The resulting BT score
is S(a) =

P
t
log pBT (at|Pred(at))/T , where a = a1, ..., aT is

the token sequence. A C-norm followed by the T-Norm standardiza-
tion is applied to the scores. The C-norm is based on an automatic
gender-dependent 5-channel detector.

3.5. SVM word duration
The word duration system models the expected duration of phones
in words and is based on the work in [19]. Each utterance is repre-
sented as a feature vector of approximately 56,000 phone durations
in word contexts (those seen in our background training set, an ap-
proximately 3,000 utterance subset of the Fisher Corpus).

During training, vectors from a target speaker are used in con-
junction with vectors for a background model to train an SVM. We
apply a relative expected duration kernel, normalizing by the ex-
pected phone duration of each phone (in word context) from our
background model.

Each message model pair is scored as a weighted inner product
between model support vectors and the test message. T-norm is then
optionally applied to the resulting scores using models trained from
NIST SRE 04.

4. FUSION

The scores from the systems are fused with a perceptron classifier
using LNKnet. Development testing and fusion parameters are ob-
tained using the NIST SRE 05 test sets. The perceptron architecture
chosen has classifier scores fed to input nodes, no hidden layers, and
two output nodes. Input values to the perceptron are normalized to
zero mean and unit standard deviation using parameters derived from
the training data. The perceptron weights are trained using the entire
development data with a mean-squared error criteria. The classi-
fier corresponding to the number of training conversations is then
used to fuse scores from systems. The fusion classifier is trained to
minimize the DCF by using prior probability for the target class in
training and testing set to 0.09 corresponding to the costs and priors
(Cmiss ∗ Ptgt/(Cmiss ∗ Ptgt + Cfa ∗ (1 − Ptgt))). The score for
the test file is then remapped to the application prior of 0.01. The
minDCF threshold from cross-validation experiments on the devel-
opment data are used to make hard decision for the submissions.

5. EXPERIMENTS
5.1. Experimental Setup
Experiments were performed on the NIST 2006 SRE data set.
Enrollment/verification methodology and the evaluation criterion
(minDCF) were based on the NIST SRE evaluation plan [20]. Both
the 1 and 8 conversation enrollment 4-wire (4w) tasks, referred to as
1c and 8c respectively, were considered. Verification was performed
on 1 conversation 4w data. All systems as described in Sections 2
and 3 used background, T-Norm, and Z-Norm sets from the LDC
Fisher and Switchboard corpora. Fusion was trained from scores on
the NIST SRE 2005 evaluation set. Results were obtained for both
the English only task (ENG) and for all trials (ALL) which includes
speakers that enroll/verify in different languages.

5.2. Results
We break out system results for the 8c enrollment task in Figure 1.
The figure clearly shows the low error rates of the spectral only sys-
tems highlighted in the left portion of the figure. The figure also
illustrates the varying performance of different high-level systems.
The SVM MLLR approach performs the best of all high-level sys-
tems; it can be viewed as a hybrid approach that uses both high-level
word and low-level spectral information.

The fusion results are broken out according to three categories.
Fuse all is a fusion of all systems. Fuse best is a fusion of a subset
of the systems with the criteria of finding the best performing. Fuse
cep is a fusion of the cepstral only systems. Note that “fuse cep” has
excellent performance and is one of the main performance drivers.
The high-level systems add the additional performance gains to ob-
tain the best fusion results.

Figure 2 breaks out the computational complexity of various sys-
tems when they are run independently. The computational complex-
ity is approximate and reflects the real-time factor from timing tests
of the various systems on a standard task—lower numbers are bet-
ter. The figure shows 3 basic clusters. For low computation com-
plexity and low error rates, cepstral systems perform very well. In
the middle of the plot, for higher computational complexity, various
high-level systems can be implemented. These results can be fused
to show the contrasting situations of best cesptral and best overall.

As a final summary of our results, Table 1 shows the perfor-
mance of our best combination of systems for all systems and cep-
stral only systems. This table shows excellent progress from prior
NIST data sets and substantiates our claim that this system is a high-
performance system.
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for various systems on the 8c English-only task

Table 1. Summary of best performance on the NIST SRE 2006 task
(post-evaluation)

Eng All

Task EER minDCF EER minDCF
(%) (×100) (%) (×100)

1c - fuse best 2.7 1.4 4.4 2.2
8c - fuse best 1.5 0.55 2.6 1.1

1c - fuse cep 3.4 1.7 4.7 2.3
8c - fuse cep 2.1 0.76 3.0 1.4

6. CONCLUSIONS

We have demonstrated a novel synthesis of techniques for speaker
recognition using discriminative techniques, channel compensation,
and high-level speaker recognition. By limiting high-level tokeniza-
tion to one system and using multiple classifiers, we have achieved
excellent speaker recognition performance. Tradeoffs between com-
plexity and recognition accuracy were explored.
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[18] J. Navrátil, “Recent advances in phonotactic language recognition us-
ing binary decisions trees,” in Proc. Interspeech, 2006.

[19] V. R. R. Gadde, S. Kajarekar, E. Shriberg, K. Sonmez, A. Stolcke, and
A. Venkataraman, “Modeling duration patterns for speaker recogni-
tion,” in Proc. Eurospeech, 2003, pp. 2017–2020.

[20] “The NIST year 2006 speaker recognition evaluation plan,”
http://www.nist.gov/speech/tests/spk/2006/index.htm, 2005.

IV ­ 220


