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ABSTRACT 

 
Recently, there has been a rapidly increasing interest in using ASR 
for children’s language learning. An Automatic Reading Tutor 
system built with ASR technologies can track children’s oral 
reading against story texts, detect reading miscues, and measure 
the level of reading fluency. They may even diagnose the nature of 
the miscues and provide feedback to improve reading skills. In 
such tasks, N-gram language models (LM) may be trained from the 
whole story text, or may be generated based on current story 
sentence with heuristic probabilities for both regular words in the 
sentence and explicitly predicted reading miscues. The 
disadvantages of those methods are either they require a relatively 
large text and are time-consuming, or a large-sized LM and 
complex processing are needed to accommodate all possible words 
in reading stories as well as in reading miscues. This paper 
proposes an efficient and robust LM which can be easily built on-
the-fly with current reading sentences. With an additional parallel 
“garbage” model, the LM can also deal effectively with a wide 
range of reading miscues. Our experiments in a standard children’s 
reading task show that the new LM reaches the state-of-the-art 
performance in detecting reading miscues with a fast speed while 
only a relatively simple children’s acoustic model of speech was 
used. 

Index Terms— Automatic Reading Tutor, Children’s Speech 
Recognition, Language Model, ASR, Reading Miscues 
 

1. INTRODUCTION 
 
Recent years have witnessed a rapid increase in research activities 
by both academia and industry in using Automatic Speech 
Recognition (ASR) for children’s language learning [1-5]. An 
Automatic Reading Tutor (ART) system built with state-of-the-art 
ASR technologies is capable of improving children’s reading skills 
for several reasons [6]. First, it can track the children’s oral reading 
against story text and provide suitable feedback to show the current 
word position. A commercial system [5] has shown that providing 
only  simple tracking feedbacks to the child is already very helpful 
to keep his/her engagement in oral reading tasks. Second, an ART 
system can detect the reading miscues including 
mispronunciations, repetitions, deletions, filler pauses, and so on, 
which are very common for a starting-level reader. By correctly 
detecting those miscues, the system may provide appropriate help 
information to the child similar to a human tutor. Such information 
includes correcting the mispronunciation by providing pre-
recorded or TTS-based pronunciations, and suggestions on specific 
practices with respect to difficult words or phonemes. Third, an 

ART system can measure the fluency level of a child and provide 
testing metrics similar to regular language testing. The advantages 
of the ART system in keeping children engaged in reading and 
learning for a longer time than human tutor are particularly 
beneficial. Not only does it save cost and time compared with 
human tutors, it also improves the reading proficiency with a faster 
speed than regular classroom study [3].  
      However, there are a number of technical challenges in 
building a robust and effective ART system that works well for 
children. First, the broad range of variants in children’s speech 
makes the acoustic modeling particularly difficult [7]. Second, the 
system is required to detect as many as possible reading 
disfluencies or miscues, while not frustrating the child with too 
many false alarms at the same time. This is a dilemma by itself. 
Third, the system needs to consider very special user experience 
with respect to children, as children tend to play with the system 
with random actions. One typical example is that many children do 
not like to wear a headphone or cannot help playing with it while 
reading.  
     One unique feature of an ART system differentiating it from 
other speech applications is that the system knows the sentences 
the child will read. However, a brute-force force-alignment would 
work poorly in this scenario since children may skip, repeat, pause, 
jump around the words, or generate non-speech fillers. To deal 
with these reading miscues, many reported systems exploited an N-
gram language model (LM) which may be trained from the whole 
story text (e.g. [4]), or may be generated based on current reading 
sentence with heuristic probabilities for both regular words in the 
sentence and explicitly predicted irregular words or 
mispronunciations ([3,8]). Regular language modeling methods 
such as smoothing can be used in this procedure. However, these 
approaches are either time-consuming in processing whole reading 
text, or vulnerable for Out-of-Vocabulary words or miscues. To 
overcome these difficulties, we in this paper propose an efficient 
language modeling approach using the interpolated N-gram Filler 
Model [9,10] which can be built on-the-fly based on the current 
reading sentences. With a built-in “garbage” path, it is possible to 
detect different kinds of miscues. Our initial experiments in a 
standard children’s story-reading task (using the corpus from 
University of Colorado-Boulder [11]) show that the performance 
of detecting reading miscues is as good as the state-of-the-art ART 
system which built the LM with much more complex processing 
[4,11]. This performance is achieved using much simpler 
children’s acoustic model than that reported in [11]. 
    This paper is organized as follows. In Section 2 the proposed 
language modeling approach is described. In Section 3 the 
“garbage” model for the detection of miscues is discussed. In 
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Section 4, we report the experiments on a standard public children 
reading task and draw conclusions in Section 5. 
 
2. ON-LINE LANGUAGE MODELING FOR AUTOMATIC 

READING TUTOR  
 
Many ART systems use N-gram based statistical language models 
(SLM) to improve the robustness of the system [3,4]. There are 
several approaches in the literature to using SLM for ART. First, a 
general-domain N-gram SLM (typically built on the desktop-
dictation task) has no development cost for the ART system but the 
performance is generally not good enough. Second, domain-
specific SLM (completely trained from reading texts) works well 
but it requires large data corpus and complex processing involving 
specially designed toolkits. Here we propose using an on-line 
interpolated LM [10] where a domain-specific core LM is trained 
completely from a limited set of training sentences (e.g., current 
story paragraph or sentences). The concept behind this LM is the 
fact that SLM can be implemented as a Context Free Grammar 
(CFG) [12], and hence the core LM can be constructed on-the-fly 
as a CFG given current story texts. At the same time, a general- 
domain “garbage” model N-Gram Filler [9] (typically a trimmed 
version of the dictation grammar) is attached through the unigram 
back-off state to improve robustness. The interpolation is achieved 
by reserving some unigram counts for the unseen garbage words. 
Fig. 1 illustrates the proposed LM for a given story paragraph or 
sentence. There are a target CFG and a garbage CFG, 
corresponding to the domain-specific LM and general-domain LM, 
respectively. These two paths are connected by a unigram back-off 
node from the target CFG. <S> and </S> are the entry and exit 
nodes for the grammar. The two weights shown in Fig. 1 control 
the possibilities of moving from the target CFG to the backoff node 
(w1), and from the backoff node to the garbage CFG (w2). 

Target CFG

Backoff Node

Garbage CFG

w1

w2

<S> </S>

 
Fig. 1. An schematic illustration for proposed interpolated LM.    
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Fig. 2. Interpolated N-gram Model for a short sentence (“Giants 
are huge.”). Transitions without labels are back-off transitions. 
    
    The size of the resulting LM above is small (typically a few 
Kilo-bytes) due to the small size of the current story text. The 
Garbage model (N-gram Filler) is relatively large --- 4 Mega bytes 
in our system, but there is no harm to the overall system since it 
can be shared by all different sentences or paragraphs. Fig. 2 
depicts the binary CFG built from a single story sentence “Giants 
are huge”. In addition to the three special states (<S>, </S>, and 

unigram backoff state), states with one word (e.g., “Giants”) are 
bigram states and states with two words (e.g., “Giants are”) are 
trigram states. 
    It is critical to use a small-sized LM since it gives fast response 
time for tracking, which is very important for keeping children’s 
engagement. Some other systems can not provide such real-time 
tracking for each word (although they did provide sentence-level 
tracking) [3,5], partially because of the large size in their LMs.  In 
contrast, our approach makes it relatively easy to achieve word-
level real-time tracking since the LM can be constructed for each 
sentence with a very small overhead. 
 

3. DETECTION OF READING MISCUES 
 
Due to the “imperfect” nature of children’s speech, most typically 
for those at the stage of acquiring reading ability, many 
mispronunciations, repetitions, and insertions, deletions, as well as 
filler pauses in the speech are expected. All these disfluent speech 
phenomena are called reading miscues [3,8]. One purpose of an 
ART system is to automatically detect all reading miscues and 
trigger necessary help information so that the struggling readers 
can benefit from the system’s feedback with correct pronunciations 
or specific practices on difficult words [3]. One possible way to 
detect reading miscues is to predict possible miscues and add them 
into the lexicon and the LM. In [8], different types of miscues are 
obtained from a large miscues database and are combined with 
some truncated forms of regular words. And all those miscues have 
to be assigned with some small N-gram probabilities discounted 
from their corresponding regular words’ N-grams. In [13], a 
special decoding engine was developed, where three cascaded 
lexical trees was built for subword units in addition to the regular 
lexical tree for normal words. This multi-layer method is targeting 
on the detection of subword in children’s speech. In [14], a 
phonetic lattice was built based on FST, and the phoneme graph 
for each word is specially designed to allow partial-pronunciations. 
All these methods have the advantages in detecting sub-word level 
miscues, but they come with a cost of needing to re-design the 
decoding engine or re-train the LM.  
      No such a cost incurs in our proposed method, where the N-
gram garbage model shown in Fig. 1 is used for the detection of 
reading miscues. This garbage model is obtained from a general- 
domain N-gram model but is trimmed down so that it includes only 
the most common 1600 words. To save the CPU/memory, only 
bigram and unigram are used in the garbage CFG (actually we also 
found that using trigram-based garbage model did not provide 
much improvement). We gain three advantages with the above 
miscue detection scenario. First, it can be easily built on-the-fly. 
Second, there is no cost to change decoding engine, and it can 
work with any commercial ASR system. Finally, by changing 
weights w1, and w2 (shown in Fig. 1) it is easy to obtain a ROC 
curve instead of a fixed point of detection rate and false alarm [3, 
4]. This final advantage can be illustrated in Fig. 3, where an 
equivalent two-path grammar is drawn for each word. Weight w0 is 
the equivalent garbage model weight which can be calculated 
based on w1, w2 and the Target CFG in Fig. 1. Given a speech 
segment X, the target word T, and the garbage word(s)1 G, we 
obtain a hypothesis testing scenario as follows: 
       H0:   Target Word T exists;  
       H1:   Target Word T does not exist;       

                                                 
1 There may be more than one garbage words corresponding to a 
target word. 
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      Then the decision rule is given by 
      H0: when 1
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      H1: otherwise 
where )|( TXP  and )|( GXP are the acoustic score for the target 
and garbage words, respectively, and )(TP and )(GP  are LM 
scores for the target and garbage words, respectively. The above 
decision rule is equivalent to the following decision rule: 
       H0: when 
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       H1: otherwise, 
       Here  is a threshold as an explicit function of w0. As can be 
seen, this detection scenario is equivalent to regular hypothesis 
testing in the utterance verification problem. 

Target Word

Garbage Word(s)
W0

1-W0

Other word or
ending Node

Other word or
Starting Node

 
Fig. 3. The equivalent grammar for each single word. 

 
      Our detection technique presented above may appear to be able 
to detect word-level instead of subword-level miscues. However, 
in our experiments, we have found many detected subword-level 
miscues. Detailed analysis indicates that this rather remarkable 
ability is achieved by virtue of outputing short words contained in 
the garbage model that are acoustically similar to the subwords.  
 

4. EXPERIMENTS 
 
In this section, experiments with proposed language model are 
reported on a published story-reading task of children. The training 
and testing data are from three US-English kids speech corpora: 
the Kid’s Prompted & Read Speech corpus (A) and Kid’s Read & 
Summarized Story corpus (B), both from University of Colorado-
Boulder [4,11], and the read speech from CMU children speech 
corpus2 (C). Table 1 lists the speaker number, grades, utterance 
number, and duration for each part of data used in training and 
testing.  
 
 Source #Spkr Grades #utterance Time (h) 
Train-1 A 665 K~5 39006 26.7 
Train-2 B 221 1,2 28829 24.5 
Train-3 C 76 K~5  5180 9.1 
Subtotal ABC 962 K~5 73015 60.3 
Test B 105 3~5    105 12.4 
Table 1. The training and testing data used in the experiments. A is 
the Kids’ Prompt & Read Speech corpus, B is the Kid’s Read & 
Summarized Story corpus, C represents CMU Kid’s speech corpus. 
  
      The testing data consists of 105 stories read by 105 children in 
grades 3, 4, and 5 (17 speakers in grade 3, 28 in grade 4 and 60 in 
grade 5). The data is collected in a quiet room with desktop 
microphone. The sampling rate is 16 KHz. There are totally 10 
different stories and each story contains an average 1054 words 
(ranging from 532 to 1926 words). Each story also comes with a 
spontaneous summary generated by the child, but we did not use 
those data for this study. 
    The children’s acoustic model was trained with HTK tools 
based on EM algorithm. The language model was built with 

                                                 
2 http://www.ldc.upenn.edu/Catalog/CatalogList/LDC97S63/ 

proposed method. Since each story was recorded in one wav file, 
an interpolated N-gram was built based on every story instead of 
every sentence, with a garbage model built from 1600 word based 
N-gram dictation model in Wall Street Journal domain. The N-
gram was built on-line so there is no overhead for language model 
training as in some other systems. It is also possible to build 
sentence-level interpolated N-gram, but much more efforts are 
needed to cut out the large waveform files into sentences.  
      The similar methodologies as [11] were used in performance 
measurement. The word error rate was computed by aligning the 
recognition hypothesis with human transcription. The detection 
rate and false alarms were computed by firstly aligning story text 
with human-transcription (story-trans) and then aligning story text 
with recognition hypothesis (story-hyps), based on well-known 
NIST alignment algorithm. A reading miscue is defined as any of 
cases of insertion, deletion and substitution appeared in story-trans 
alignment. If the same reading miscue also appears in story-hyps 
alignment, it is regarded as a detected miscue; on the other hand, if 
there is one error in story-hyps alignment but no miscue in the 
same position of story-trans alignment, it is regarded as a false 
alarm. The miscue detection rate is defined as the number of 
detected miscues divided by total number of miscues; the false 
alarm is defined as the number of false alarms divided by total 
number of correctly read words. For the details of those 
procedures, please refer to [11]. 
 

Miscue Categories Definition 
REP Word Repetition 
BR Breath 
PW Partial Word 
PS Pause 
HS Hesitation or Elongation 
WW Wrong Word 
MP Mispronunciation 
BN Background Noise 
IJ Interjection/Insertion 
NS Non-Speech Sound 
OA Over-articulation 

      Table 2. The categories and definitions of reading miscues. 
 
     Table 2 gives the categories and definitions for all kinds of 
reading miscues we used in the experiment. It should be noted that 
different from [11], for substitution errors (e.g., WW and MP), a 
simple rule was used to judge if two words are the same by directly 
comparing their spellings, with only one exception for the affix “-
s” (e.g., “Cat”  “Cats” was treated as no error). Compared with 
“soft decision” used in [11], this hard decision may be more 
desirable in real application but is believed to somehow reduce the 
detection rate or increase the false alarm rate. 
    Table 3 gives the results using above error analyses 
methodology.  A ROC curve is also illustrated in Figure 4. As can 
be seen from Table 3, when miscue detection rate increases (by 
increasing garbage model weight), the false alarm rate also 
increases, and at the same time the word error rate (WER) also 
goes up, which is mainly because more garbage words were 
generated. Please note that miscues in function words are also 
considered here. 
    Table 3 also gives the system’s overall Real-Time Factor (RTF) 
for different operating points. As can be seen, with larger weight of 
garbage model, a little bit more running time is needed, but the 
overall system runs very fast (less than 0.2 xRT). This also proves 
our previous analyses that this language model has small overhead. 
Some other experiments also indicated that when the language 
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model is built on sentence level instead of story level, it will be 
even more efficient. 
    Compared with the recently published results on the same 
testing task [11], although here the word error rate is worse ([11] 
reported 8% WER with complex processing in both acoustic and 
language modeling), the detection rate and false alarm are the same 
or even better, which indicates our proposed language model may 
detect more miscues at the same level of false alarm. It should be 
noted that in this initial experiment, no special technologies were 
used in improving children’s acoustic model, such as VTLN, 
online adaptation, and Speaker-Adaptation Training, etc. By 
improving the acoustic model with those technologies in the near 
future, we can improve recognition accuracy, which may further 
improve the detection rate and false alarm.  
     On the other hand, the above result suggests that WER may be 
not the best metrics for Reading Tutor tasks since different WER 
may still result in the same detection rate and false alarm. In fact, 
paper [6] also believes WER is not good enough in this type of task 
because even when the recognizer makes a mistake, it is still able 
to detect the miscues.  
 
Detection Rate   

(%) 
False Alarm 

(%) 
WER 
(%) 

RTF 

73.40 5.16 12.04 0.10 
74.76 6.36 13.02 0.11 
75.81 7.56 14.12 0.13 
76.31 9.11 15.52 0.17 
76.64 11.69 17.98 0.18 
76.93 15.15 21.31 0.19 

 
Table 3. Experimental results with proposed N-gram model on 
children’s story-reading task. The weight of garbage model 
increased from the top row to the bottom row. 
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Fig. 4. The ROC curve for the detection rate and false alarm by 
changing the weight of garbage model. 
 

  5. CONCLUSION 
 
This paper proposes an efficient and robust language modeling 
approach for building an Automatic Reading Tutor system. This 
language model is based on recently proposed interpolated LM 
approach by Microsoft Research. The advantages of this method 
exist in four folds. Firstly, it dramatically reduces the effort for 
building a new ART system which has new and special challenges 
considering children as target users. Secondly, it provides 
robustness to detect different types of reading miscues, without 
predicting which kind of miscues would be generated by children. 
Thirdly, by changing the weights of garbage model, it is easy to 
obtain a ROC curve instead of a fixed point. Finally, it is very 
efficient, almost no overhead to the system.   
    In the future, besides improving the children’s acoustic model 
with more training data and better training approaches, we will 

continue improving the ability of this language model in detecting 
more reading miscues (at the same or lower false alarm). One 
possible direction is to use phoneme-level garbage model instead 
of word-level garbage model as used here, which may be more 
robust to sub-word level miscues. 
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