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ABSTRACT

We describe recent extensions to our previous work, where we ex-
plored the use of individual classi ers, namely, boosting and max-
imum entropy models for sentence segmentation. In this paper we
extend the set of classi cation methods with support vector machine
(SVM). We propose a new dynamic entropy-based classi er combi-
nation approach to combine these classi ers, and compare it with the
traditional classi er combination techniques, namely, voting, linear
regression and logistic regression. Furthermore, we also investigate
the combination of hidden event language models with the output
of the proposed classi er combination, and the output of individual
classi ers. Experimental studies conducted on the Mandarin TDT4
broadcast news database shows that the SVM classi er as an individ-
ual classi er improves over our previous best system. However, the
proposed entropy-based classi er combination approach shows the
best improvement in F-Measure of 1% absolute, and the voting ap-
proach shows the best reduction in NIST error rate of 2.7% absolute
when compared to the previous best system.

Index Terms— sentence segmentation, classi er combination,
entropy, lexical and prosodic features, hidden event language model

1. INTRODUCTION

Sentence segmentation aims to enrich the unstructured word sequence
output of automatic speech recognition (ASR) systems with sentence
boundaries, to ease the further processing by both humans and ma-
chines. For instance, the enriched output of ASR (i.e., with sentence
boundaries marked) can be used for later processing such as machine
translation, question answering, or story/topic segmentation.

In the literature, the task of detecting sentence boundaries is seen
as a two-class classi cation problem, and different classi ers have
been investigated. [1] and [2] use a method that combines hidden
Markov models (HMM) with N-gram language models containing
words and sentence boundary tags associated with them [3]. This
method was later extended with confusion networks in [4]. [5] pro-
vides an overview of different classi cation algorithms (boosting,
hidden-event language models, maximum entropy models and de-
cision trees) applied to this task for multilingual broadcast news.
Besides the type of classi er, the use of different features has been
widely studied. [2, 6] showed how prosodic features can bene t the
sentence segmentation task. Investigations on prosodic and lexi-
cal features in the context of telephone conversations and broadcast
news speech are also presented in [6, 5]. More recently, the use of
syntactic features has been studied in [7].

In this paper, we extend our previous work on sentence segmen-
tation for broadcast news in the framework of the DARPA GALE
program [5], where different classi ers, namely, decision trees, boost-
ing, and maximum entropy models, were investigated. It was found
that boosting was the best individual classi er. Furthermore, it was

shown that performance can be further improved by combining the
individual classi er probabilities with the probabilities estimated from
hidden event language model (HELM).

While our previous work focused on individual classi ers and
their combination with HELM, this paper focuses on combining the
individual classi er outputs to improve the performance of sentence
segmentation. More speci cally, we study the use of the entropy-
based classi er combination approach, which has been successfully
used for ASR [8]. The entropy-based approach dynamically esti-
mates the weight for each classi er based on its instantaneous out-
put probabilities for each example and combines the output proba-
bilities of the different classi ers before making the nal decision.
We compare this approach to a standard classi er decision combina-
tion approach, voting, and other static-weight-based classi er com-
bination techniques such as linear regression and logistic regression.
The predicted advantage of the entropy-based approach over linear
regression and logistic regression is that it can generalize well to dif-
ferent data sets. Our results on the Mandarin TDT4 broadcast news
database validate this prediction. The classi ers used in our stud-
ies are boosting, maximum entropy models, and SVM. Finally, we
also study the combination of individual classi er output probabili-
ties as well as the combined probabilities resulting from the entropy-
based approach with HELM probabilities. The newly proposed dy-
namic classi er combination method for sentence segmentation fur-
ther improves performance. When we combine the outcome of clas-
si er combination with HELMs, we obtain the best performance of
55.2% NIST error rate, a 2.7% absolute reduction from the NIST
error rate of 57.9% obtained with the previous approach. With this
new method, the F-measure also improves from 70.6% to 71.6%.

The rest of the paper is organized as follows. Section 2 for-
mulates the sentence segmentation problem as a classi cation task,
and then describes the different classi ers and classi er combination
techniques that have been investigated. Sections 3 describes our ex-
perimental setup and the results are presented in Section 4. Finally,
in Section 5 we conclude.

2. SENTENCE SEGMENTATION

Sentence segmentation can be considered as a binary boundary clas-
si cation problem with “sentence-boundary” (s) and “non-sentence-
boundary” (n) as classes [5]. For a given word sequence {w1, ..., wN},
the goal is to estimate the classes for boundaries {s1, ..., sN}, where
si, i = 1, ..., N is the boundary between wi and wi+1. Usually, this
is done by training a classi er to estimate the posterior probability
P (si = k|oi), where k ∈ {s, n} and oi are the feature observations
for the word boundary si.

Ideally, the decision of the classi er is the class with maximum
probability P (si = k|oi). However, in a sentence segmentation task
the probability for sentence boundary P (si = s|oi) is compared
against a threshold. If above the threshold, a decision of sentence
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boundary is made, else the boundary is marked as a non-sentence-
boundary. As it will be seen later, for different classi ers and differ-
ent evaluation metrics the optimal threshold is different.

2.1. Classi ers

In this work, we have used boosting, maximum entropy and SVM
classi ers to estimate P (si|oi).

Boosting is an iterative learning algorithm that aims to combine
“weak” base classi ers to come up with a “strong” classi er. At each
iteration, a weak classi er is learned so as to minimize the training
error, and a different distribution or weighting over the training ex-
amples is used to give more emphasis to examples that are often
misclassi ed by the preceding weak classi ers. For this approach
we use the BoosTexter tool described in [9], which has the advantage
of discriminative training. Moreover, it can deal with a large set of
features both discrete and continuous valued, and has the capability
to handle missing feature values.

Maximum entropy (MaxEnt) models are prominently used for
natural language processing [10]. The main advantages of MaxEnt
models are discriminative training, capability to handle a large set
of features, exibility in handling missing feature values, and con-
vergence to a unique de ned global optimum. In standard MaxEnt
models, the features are discrete valued. However, the feature set
used in our studies contains continuous valued features in addition
to discrete valued features. The process of discretizing the continu-
ous valued features for MaxEnt models is subject to research. In this
work, we discretize the continuous valued feature by binning them
to 10 classes similar to [5]. We use the open NLP toolkit to train the
MaxEnt models [11].

SVMs are used in wide range of pattern recognition applica-
tions [12]. SVMs provide advantages similar to MaxEnt models in
terms of discriminative training and capability to handle a large set
of features. In addition to it, SVMs can handle both discrete val-
ued and continuous valued features. In our studies, we normalize
the continuous valued features in the training data so as to have a
zero mean and unit variance. In our data, there are instants where
a feature value may be missing (for the words that ASR outputs as
reject labels). In such a case, we introduce a new token for unknown
discrete valued features. For continuous valued features, we use the
mean value, that is 0.0. When training SVM classi er we found that
the choice of the kernel type is not obvious. When using mainly lexi-
cal features (discrete valued) the best performance is achieved with a
linear kernel, whereas while using both lexical and prosodic features
(both discrete and continuous valued) the use of a polynomial kernel
of degree 2 yields the best performance. For our studies, we use the
SVMlight toolkit [13].

2.2. Classi er Combination

Combining classi ers is a well researched topic in machine learning
and spoken language processing [14, 15, among others]. Some of
the most common classi er combination methods used in the litera-
ture include voting, and linear and logistic regression. The general
objective of classi er combination is to exploit the complementary
information between the classi ers. In a sense, the different classi-
ers in a classi er combination can be seen as a collection of weak

classi ers, where each classi er can solve some different dif cult
problems. Then, the process of combination involves combining the
decisions of classi ers or assigning a weight to each classi er’s out-
put evidence (in our case P (si|oi)) and combining the evidence so
as to reduce the objective error. The weights can be estimated stati-
cally, that is, a priori, on held-out data or development data, for ex-
ample linear regression or dynamically, for example inverse entropy

combination. In this paper, we have investigated both.
Let c ∈ {1, ..., C} and Pc(si = k|oi) denote the different clas-

si ers (in our case C = 3) and their output probabilities at instant
i. Given these, we investigate the following classi er combination
techniques:

• Inverse entropy

• Voting

• Linear regression

• Logistic regression

2.2.1. Inverse Entropy

Given the instantaneous classi er output probabilities, the idea of
inverse entropy combination is to assign large weights to classi ers
that are more con dent in their decisions and small weights to clas-
si ers that are less con dent in their decisions [8]. The con dence is
measured in terms of entropy entc of classi er output probabilities,
that is,

entc =

K∑

k=1

−Pc(si = k|oi) · log2(Pc(si = k|oi)), ∀c (1)

where K is the number of output classes, which in our case is 2.
The weight ωc for each classi er is then estimated as

ωc =

1
entc∑C
c=1

1
entc

, ∀c (2)

Having estimated the weight for each classi er, the output prob-
abilities of the classi ers can be combined in two different ways:

1. Sum rule

P (si = k|oi) =
C∑

c=1

ωc · Pc(si = k|oi), ∀k (3)

2. Product rule

P (si = k|oi) = 1

Z
·
C∏

c=1

Pc(si = k|oi)ωc , ∀k (4)

where Z is a normalization factor.

The decision about output class is then made based upon P (si =
s|oi).
2.2.2. Voting

The voting technique looks for agreement between classi ers output
decisions. Typically, each classi er votes for each output class based
on its decision. The nal decision or the output class is the class
getting the maximum number of votes.

In our case, all classi ers have one vote and each classi er c
decides its vote by comparing Pc(si = s|oi) to the threshold.

2.2.3. Linear Regression

In a linear regression classi er combination, the combined probabil-
ity for the class sentence boundary (P (si = s|oi)) is estimated as the
linearly weighted sum of classi er output probabilities for sentence
boundary class Pc(si = s|oi):

P (si = s|oi) = a +

C∑

c=1

ωc · Pc(si = s|oi) (5)

where a is a bias term. The bias a and the weights wc are optimized
on development data, and are frozen for the test data. In our studies,
we use the MATLAB function regress to estimate the weights and
constant.
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2.2.4. Logistic Regression

The classi er output probabilities can be combined using logistic re-
gression by treating them as predictor variables of the logistic func-
tion, and estimating the combined probability for the sentence bound-
ary class (P (si = s|oi)) as

P (si = s|oi) = 1

e−(a+
∑C

c=1 ωc·Pc(si=s|oi))
(6)

where the bias a and weights wc for each classi er c are estimated
on a development data similar to linear regression. In our work, we
estimate the optimal a and wc on the development data using the
Newton-Raphson method [16].

3. EXPERIMENTAL SETUP
3.1. Data

To evaluate our approach, we have used a subset of the TDT4 Man-
darin Broadcast News corpus. Table 1 lists the properties of the train-
ing, development and test sets, which are picked out in a time order
(that is, all shows in the training set precede the development and
test set shows). The sentence segmentation experiments have been
performed on the ASR output that was used in our earlier work [5].

Training Dev Test
No. of shows 131 17 17
No. of sentence units 19,643 2,903 2,991
No. of examples 481,419 72,152 77,915

Table 1. Training, Development (Dev) and Test data sets.

3.2. Feature sets

To study the use of prosodic features, we use two feature sets, namely,
WP and ALL:

• WP: includes only the words around the boundary, pause du-
ration, and their N-grams

• ALL: includes WP, prosodic features, speaker turn, and part-
of-speech (POS) tag N-grams

In addition to the word-based prosodic features related to pitch,
pitch slope, energy and pause duration between words that
were used in our earlier work [5], we also use speaker normal-
ized versions of pitch and energy features. We used the ICSI-
SRI speaker diarization system to divide the audio data into
hypothetical speakers [17]. The baseline and ranges for pitch
and energy features were estimated on each speaker, which
were then used as parameters in the normalization. Further,
the prosodic feature also includes turn-based features which
describe the position of a word in relation to diarization seg-
mentation. The speaker turn features were extracted from the
diarization segmentation. We use the POS tag features that
were used in [5].

3.3. Evaluation Metrics

We evaluate our systems in terms of F-measure (FM ) and NIST
error rate (NIST ) [18]. If I is the number of insertions (i.e., false
positives), D is the number of deletions (i.e., false negative) and C
is the number of sentence boundaries correctly recognized, then:

precision =
C

(C + I)
, recall =

C

(C + D)

FM =
2.precision.recall

(precision + recall)
(7)

NIST =
(I + D)

(C + D)
(8)

Here note that unlike FM , NIST does not have an upper bound.

4. RESULTS

Tables 2 and 3 show sentence segmentation performance with indi-
vidual classi ers and combination classi ers with various methods
for the development and test sets, respectively, using both the WP
and ALL feature sets. In all the tests, we use the optimum thresholds
on the development set for computing the NIST error and F-measure
on the test set. With the ALL features, out of the three classi ers,
SVM performs the best with 57.6% NIST error rate and 69.8% F-
measure. The inverse entropy (IE) classi er combination method
results in the best F-measure of 70.9% on the test set, and the vot-
ing method results in the lowest NIST error rate of 56.6%. The
performance difference between the voting and IE methods and the
linear and logistic regression methods on the test set is statistically
signi cant,1 the rst two performing better. The MaxEnt classi er
performs the best on the W P feature set, but performs poorer com-
pared to boosting and SVM on feature set ALL. This may be pri-
marily due to the way the discretization of the continuous valued
feature is performed.

WP ALL
FM NIST FM NIST

Boosting 68.0 64.9 72.6 54.3
MaxEnt 68.5 64.5 69.1 60.3
SVM 67.9 64.9 72.7 52.2

IE (sum) 69.4 61.8 73.6 51.8
IE (prod) 69.2 61.7 73.5 51.8
Voting 69.0 62.4 73.4 51.6
Linear 69.1 61.9 73.6 52.2

Logistic 69.6 61.4 73.9 51.9

Table 2. Sentence segmentation performance on the development
set for feature sets WP and ALL. The FM and NIST are expressed
in %. IE denotes inverse entropy, and sum and prod refer to the
sum and product combination rules in (3) and (4), respectively. Lin-
ear denotes the linear regression technique, and Logistic denotes
the logistic regression technique. Note that the linear regression and
logistic regression weights were estimated on the development set.
The best performance for individual classi ers and classi er combi-
nation is in boldface.

Table 4 shows the performance when we convert the posterior
probabilities from each classi er and combination classi er and use
them as state observation likelihoods in the hidden event language
model (HELM). The HELM used for this experiment is a 4-gram
model and is trained using all the text in the training set, as well as
other data. We achieve the best NIST error of 55.2% on the test set
when the combined probabilities are estimated as class probabilities
averaged across classi ers supporting the decision of voting method.

5. CONCLUSIONS

We have described the recent extensions to our previous work on
sentence segmentation, where we extend the set of classi cation

1according to the Z-test with 95% con dence interval
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WP ALL
FM NIST FM NIST

Boosting 64.4 71.5 68.9 61.3
MaxEnt 65.7 70.8 67.3 63.5
SVM 64.7 71.9 69.8 57.6

IE (sum) 66.5 68.2 70.7 57.6
IE (prod) 66.1 68.6 70.9 57.3
Voting 66.4 68.7 70.6 56.6
Linear 64.1 70.2 67.4 60.0

Logistic 64.1 69.7 68.6 59.6

Table 3. Sentence segmentation performance on the test set for fea-
ture sets WP and ALL. The FM and NIST are expressed in %. IE
denotes inverse entropy, and sum and prod refer to the sum and prod-
uct combination rules in (3) and (4), respectively. Linear denotes the
linear regression technique, and Logistic denotes the logistic regres-
sion technique. The linear regression and logistic regression weights
are estimated on the development set. The best performance for in-
dividual classi ers and classi er combination is in boldface.

Dev Test
FM NIST FM NIST

Boosting+HELM 74.1 50.9 70.6 57.9
MaxEnt+HELM 71.5 55.0 69.2 61.1
SVM+HELM 75.5 48.9 71.9 56.7

IE (sum)+HELM 74.3 49.5 71.3 56.3
IE (prod)+HELM 74.5 49.5 71.6 56.1
Avg. Prob+HELM 74.2 49.5 70.8 55.2

Table 4. Results of sentence segmentation studies with HELM for
feature set ALL on the development (Dev) and test set. The FM and
NIST are expressed in %. IE(sum): the combined classi er output
probabilities are estimated using (3), IE(prod): the combined clas-
si er output probabilities are estimated using (4), Avg. Prob: Class
probabilities averaged across the classi ers supporting the decision
of voting method. The best performance for individual classi ers
and classi er combination is in boldface.

methods with SVMs and combine classi cation methods with a new,
dynamic, entropy-based classi er combination method, which was
already shown to be useful for ASR. We show improvements when
we use an extended set of prosodic features in addition to pause du-
ration with all classi ers. Furthermore, to model the sequence infor-
mation, we incorporate the combined classi er output with hidden
event language models. We show statistically signi cant improve-
ments for both NIST error rate and F-measure.
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