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ABSTRACT

In recent NIST evaluations on sentence boundary detection, a
single error metric was used to describe performance. Additional
metrics, however, are available for such tasks, in which a word stream
is partitioned into subunits. This paper compares alternative evalua-
tion metrics—including the NIST error rate, classification error rate
per word boundary, precision and recall, ROC curves, DET curves,
precision-recall curves, and area under the curves—and discusses
advantages and disadvantages of each. Unlike many studies in ma-
chine learning, we use real data for a real task. We find benefit from
using curves in addition to a single metric. Furthermore, we find
that data skew has an impact on metrics, and that differences among
different system outputs are more visible in precision-recall curves.
Results are expected to help us better understand evaluation metrics
that should be generalizable to similar language processing tasks.

Index Terms— sentence boundary detection, precision, recall,
ROC curve

1. INTRODUCTION

Sentence boundary detection has received increasing attention in re-
cent years, as a way to enrich speech recognition output for better
readability and improved downstream natural language processing
[1, 2, 3]. Automatic sentence boundary detection itself was part of
the recent NIST rich transcription evaluations.1 In addition, studies
have been conducted to evaluate the impact of sentence segmenta-
tion on subsequent tasks, including speech translation, parsing, and
speech summarization [2, 4, 5].

In the NIST evaluations, system performance for sentence bound-
ary detection has been evaluated using an error rate (total number of
inserted and deleted boundaries, divided by the number of reference
boundaries). Research studies ([2, 3]) have also begun to look at the
ROC curve, DET curve, and F-measure. Of course, since the ulti-
mate goal is to aid downstream language processing tasks, a proper
way to evaluate sentence boundary detection would be to look at
the impact on the downstream tasks. In fact, in [2] it was shown
that the optimal segmentation for parsing is indeed different from
that obtained when optimizing for sentence boundary detection ac-
curacy using the aforementioned NIST metric. Other application-
based studies include the impact of sentence boundary detection for
machine translation [4] and for summarization [5].

This paper examines various evaluation metrics and discusses
their advantages and disadvantages. We focus on the boundary de-
tection task itself, rather than its impact on downstream applica-
tions. In addition, we evaluate the effect of different priors of the

1See http://www.nist.gov/speech/tests/rt/rt2004/fall/ for more information
on NIST evaluations.

event of interest (i.e., sentence boundaries) by using different cor-
pora. Highly skewed priors are inherent to this and related tasks,
since boundary events are typically rare compared to nonboundaries.
Unlike most studies in machine learning, this work focuses on a real
language processing task. The study is expected to help us better un-
derstand evaluation metrics that will be generalizable to many simi-
lar language processing tasks involving segmentation of the speech
stream into subunits — for example, topic, story, or dialog act.

2. METRICS

The task of sentence boundary detection in speech is to determine
the location of boundaries given a word sequence (typically from a
speech recognizer) and associated audio signal. In this study, we
use reference transcriptions, to avoid confounding discussion with
the effects of recognition errors themselves; the metrics for recog-
nition output apply similarly after aligning recognition output with
reference transcriptions. We can represent the task as two-way clas-
sification or detection, that is, label each interword boundary as ei-
ther “sentence” or “no-sentence”. Table 1 shows the notation we use
for the confusion matrix result. For a given task, the total number
of samples is tp + fn + fp + tn, and the total number of positive
samples is tp + fn.

system true system false
reference true tp fn
reference false fp tn

Table 1. A confusion matrix for the system output. “True” means
positive examples, that is, sentence boundaries in this task.

2.1. Metrics Description

Various metrics have been used for evaluating sentence boundary
detection or similar tasks, in individual studies. For example, in
[6, 7], metrics are developed that treat the sentences as units and
measure whether the reference and hypothesized sentences match
exactly. Slot error rate [8] was introduced first for information ex-
traction tasks, and later used for sentence boundary detection. Kappa
statistics have often been used to evaluate human annotation consis-
tency, and can also be used to evaluate system performance, that is,
treating system output as a ‘human’ annotation. Other metrics in
the general classification literature, such as cost curves [9], have not
been widely used for evaluating sentence boundary detection.
In this paper we focus on the following metrics:

• NIST metric. The NIST error rate is the sum of the inser-
tion and deletion errors per the number of reference sentence
boundaries. Using the notation in Table 1, this becomes

NIST error rate =
fn + fp

tp + fn
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Note that the NIST evaluation tool mdeval2 allows bound-
aries within a small window to match up, in order to take into
account different alignments from speech recognizers. We
ignore that detail in this study and simply treat the task as
straightforward classification.

• Classification error rate. If this task is represented as a clas-
sification task for each interword boundary point, then the
classification error rate (CER) is

CER =
fn + fp

tp + fn + fp + tn

• Precision and recall. These metrics are widely used in infor-
mation retrieval, and are defined as follows:

precision =
tp

tp + fp

recall =
tp

tp + fn

A single metric is often used to reflect both precision and re-
call, and their tradeoff:

F-measure =
2 × precision× recall

precision+ recall

• ROC curve. Receiver operating characteristic (ROC) curves
are used for decision making in many detection tasks. They
show the relationship between true positives (= tp

tp+fn
) and

false positives (= fp

fp+tn
) as the decision threshold varies.

• PR curve. The precision-recall (PR) curve shows what hap-
pens to precision and recall as the decision threshold is var-
ied.

• DET curve. A detection error tradeoff (DET) curve plots the
miss rate (= fn

tp+fn
) versus the false alarms (i.e., false posi-

tive), using the normal deviate scale [10]. It is widely used in
the task of speaker recognition, but less used for other classi-
fication problems.

• AUC. The curves above provide a good view for the system’s
performance at different decision points. However, a single
number is often preferred when comparing two curves or two
models. Area under the curves (AUC) is used for this pur-
pose. It is often used for both ROC and PR curves, but less so
for DET curves.3

2.2. Relationship

For a given task, the number of positive samples (i.e., np = tp+fn)
and the total number of samples (i.e., tp + fn + fp + tn) are fixed.
Therefore, precision and recall uniquely determine the confusion
matrix, and hence the NIST error rate and classification error rate.
Each of the two error rates can uniquely determine the other since
the denominators in them are proportionally. However, from the two
error rates (without detailed information about insertion or deletion
errors), we cannot infer the precision and recall rate.
The ROC and PR curves are one-to-one mapping curves. Each

point in one curve uniquely determines the confusion matrix, and
thus the point in the other curve. For the ROC and PR curves, it has
been shown that if a curve is dominant in one space, then it is also

2The scoring tool is available from http://www.nist.gov/speech/tests/rt/
rt2004/fall/tools/.
3For DET curves, single metrics such as the EER (equal error rate) and

DCF (detection cost function) are often used in speaker recognition.

dominant in the other [11]. Such a relationship also holds for the
ROC and DET curves. This is straightforward from the definition
of these curves—true positive versus false positive in ROC curves,
and miss rate (i.e., 1 − true positive) versus false positive on the
scale of the normal deviate in DET curves. Since normal deviation
is a monotonic function, changing the axis to a normal deviate scale
preserves the property of being dominant.

3. ANALYSIS ON RT04 DATA SET

3.1. Sentence Boundary Detection Task Setup

To study the behavior of different metrics on real data, we evaluated
sentence boundary detection for a state-of-the-art system on two dif-
ferent corpora. We used the RT04 NIST evaluation data, conver-
sational telephone speech (CTS) and broadcast news speech (BN).
The total number of words in the test set is about 4.5K in BN and
3.5K in CTS. The prior probability of a sentence boundary is dif-
ferent across the two corpora, about 14% for CTS and 8% for BN.4

Comparing the two corpora allows us to investigate the effect of data
skew differences on the metrics.

System output is based on the ICSI+SRI+UW sentence bound-
ary detection system [3]. Five different system outputs are used
in this study: decision tree classifiers using prosodic features only,
4-gram language model (LM), hidden Markov model (HMM) that
combines prosody and language model, maximum entropy (Maxent)
model using prosodic and textual information, and the combination
of HMM and Maxent.5 For all these approaches, there is a posterior
probability generated for each interword boundary, which we use to
plot the curves or to set the decision threshold for a single metric.

3.2. Results and Discussion

Table 2 shows different single performance measures for sentence
boundary detection for CTS and BN. A threshold of 0.5 is used to
generate the hard decision for each boundary point. We used the rec-
ognizer forced alignment output (slightly different from the original
transcripts) as the input to sentence boundary detection. Reference
boundaries were obtained by matching the original sentence bound-
aries to the alignment output.

Figure 1 shows the ROC, PR, and DET curves for the five system
outputs, for both CTS and BN. The points shown in the PR curves
correspond to using 0.5 as the decision threshold (i.e., the results
shown in Table 2). The points for HMM, Maxent, and their combi-
nation are close to each other, and thus are not individually labeled
with arrows.

In Table 2, for almost all the cases (except recall on CTS), the
combination of HMM and Maxent achieves the best performance.
The curves also show that generally HMM, Maxent, and their com-
bination are close to each other, and much better than the other two
curves for the prosody and LM, for both CTS and BN. However, in
this study, our goal is not to determine the best model to optimize a
single performance metric. We are more interested in looking at dif-
ferent system outputs and how they behave with respect to evaluation
metrics.

3.2.1. Domain and metrics

BN and CTS have different speaking styles and class distributions
(priors of sentence boundaries), and thus comparisons across the two
domains using a single metric may not be informative. For example,
the CER is similar across the two domains (for HMM, Maxent, and

4In the EARS program, each sentence-like unit was called an “SU” [12].
5Details of the modeling approaches can be found in [3].
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BN CTS
Prosody LM HMM Maxent HMM+Maxent Prosody LM HMM Maxent HMM+Maxent

NIST error rate (%) 73.86 74.31 52.58 50.21 47.87 53.94 40.22 29.42 28.38 27.78
CER (%) 6.10 6.14 4.34 4.15 3.96 7.76 5.79 4.23 4.08 4.00
Precision 0.751 0.751 0.821 0.822 0.845 0.864 0.842 0.876 0.894 0.896
Recall 0.391 0.384 0.606 0.635 0.639 0.547 0.736 0.823 0.812 0.817
F-measure 0.514 0.508 0.698 0.717 0.727 0.670 0.785 0.848 0.851 0.855
ROC AUC 0.893 0.941 0.978 0.975 0.981 0.928 0.969 0.985 0.985 0.987
PR AUC 0.601 0.652 0.804 0.815 0.832 0.791 0.878 0.929 0.934 0.938

Table 2. Different performance measures for sentence boundary detection in CTS and BN. The decision threshold is 0.5.
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Fig. 1. ROC, PR, and DET curves for CTS and BN from five different systems: Prosody, LM, HMM, Maxent, and the combination of HMM
and Maxent.
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their combination), but to some extent that is because of the higher
degree of skew for BN than for CTS. Using other metrics such as the
NIST error rate and precision/recall can better reflect inherent per-
formance differences. As expected, for imbalanced data sets where
the majority is negative examples, ROC curves show weakness in
distinguishing different classifiers or comparing across tasks, since
the large number of negative examples (i.e., tn + fp) often results
in small differences between the false positive rates. The AUC for
the ROC curves is quite high for both BN and CTS, whereas in the
PR space the difference between BN and CTS is more noticeable.
The PR curves and the associated AUC values are much worse in
BN than CTS. For the imbalanced data, PR curves often have ad-
vantages in exposing the difference between algorithms, as shown in
Figure 1. DET curves also better illustrate the difference between
the curves across the two corpora (e.g., the slopes of the curves).

3.2.2. Interaction among domains, models, and metrics

There is some difference between models across the two domains.
For BN, using only the prosody model performs similarly to or slightly
better than the LM alone, in terms of error rate, precision, and re-
call. However, the AUC values for the prosody model are worse
than those for the LM, for both ROC and PR curves. As shown from
the PR curves, in the region around the decision threshold (and also
the region to the left, i.e., with lower recall), the prosody curve is
better than the LM, but not in other regions. Therefore, using the
curves helps to determine what model or system output is better for
the region of interest. For BN, the PR curves for the prosody model
and the LM cross in the middle, but this is not so for CTS, where
the LM alone achieves better performance than prosody alone, using
most of the metrics (except precision, as shown in Table 2).

3.2.3. Single metrics versus curves

Table 2 shows that the different measurements for this sentence bound-
ary task are highly correlated for one corpus — an algorithm is often
better than another using many single metrics. However, one sin-
gle metric does not provide all the information, since it is the mea-
sure for one particular chosen decision point. As described earlier,
the NIST error rate and CER cannot determine confusion matrix, or
precision and recall, as they combine insertion and deletion errors
(although that information can be available). For downstream pro-
cessing, if a different decision region is more preferable, using the
curves will easily expose such information as which model performs
better. For example, [2] shows that the optimal point for parsing
is different from that chosen to optimize the single NIST error rate
(intuitively, shorter utterances are more appropriate for parsing).

For the PR, ROC, and DET curves, from the discussion in Sec-
tion 2, we know that the dominance of a curve in one space implies
dominance in other spaces. Additionally, if a curve for one algorithm
is dominant over another one, then the AUC is greater. However,
that the AUC of a curve is better than another does not mean that the
curve is dominant. Similarly, the AUC comparison for the PR and
ROC curves can be different. For example, comparing HMM and
Maxent on both corpora, Maxent has better AUC in the PR space
(not very significant), but not in ROC, as shown in Table 2.

In many cases, curves for different algorithms cross each other;
therefore, it is not easy to conclude that one classifier outperforms
the other. The decision is often based on downstream applications
(e.g., improve readability, input to machine translation, or informa-
tion extraction). For this situation, using both the curves, along with
single value measurement is a better idea. For visualization, PR
curves expose information better than ROC, especially for imbal-
anced data sets. DET curves are also easier to visualize than ROC

curves, and more effectively show differences between algorithms.

4. CONCLUSIONS

We used a real-world spoken language processing task to compare
different performance metrics for sentence boundary detection. While
this study is based on a particular sentence boundary detection sys-
tem and posterior probability distribution, the focus was on gen-
eral comparison of alternative metrics, rather than on performance
specifics. We examined single metrics, including the NIST error
rate, classification error rate, precision, recall, and AUC, as well as
decision curves (ROC, PR, and DET). Single metrics provide lim-
ited information; decision curves illustrate which model is best for
a specific region and should be preferable for downstream language
processing. Furthermore, data skew has an impact on metrics. For an
imbalanced data set, PR curves generally provide better visualization
than do ROC curves, for viewing differences among different algo-
rithms. Finally, while the analysis in this paper is based on sentence
boundary detection, the nature of this task is similar to many other
language processing applications (e.g., story segmentation). Hence,
findings should be generalizable to other similar tasks.

5. ACKNOWLEDGMENTS

We thank Mary Harper, Andreas Stolcke, Mari Ostendorf, Dustin Hillard,
and Barbara Peskin for the joint work on the sentence boundary detection
system used, and discussion of performance evaluation. This work is sup-
ported by DARPA under Contract No. HR0011-06-C-0023. Approved for
public release; distribution unlimited.

6. REFERENCES

[1] D. Jones, F. Wolf, E. Gibson, E. Williams, E. Fedorenko, D. Reynolds,
and M. Zissman, “Measuring the readability of automatic speech-to-
text transcripts,” in Proc. of Eurospeech, 2003, pp. 1585–1588.

[2] M. Harper, B. Dorr, B. Roark, J. Hale, Z. Shafran, Y. Liu,
M. Lease, M. Snover, L. Young, R. Stewart, and A. Krasnyan-
skaya, “Final report: parsing speech and structural event detection,”
http://www.clsp.jhu.edu/ws2005/groups/eventdetect/documents/final
report.pdf, 2005.

[3] Y. Liu, E. Shriberg, A. Stolcke, D. Hillard, M. Ostendorf, and
M. Harper, “Enriching speech recognition with automatic detection
of sentence boundaries and disfluencies,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 14(5), pp. 1526–1540, 2006.

[4] C. Zong and F. Ren, “Chinese utterance segmentation in spoken lan-
guage translation,” in Proc. of the 4th International Conference on
Computational Linguistics and Intelligent Text Processing, 2003.

[5] J. Mrozinski, E. Whittaker, P. Chatain, and S. Furui, “Automatic sen-
tence segmentation of speech for automatic summarization,” in Proc.
of ICASSP, 2006.

[6] J. Ang, Y. Liu, and E. Shriberg, “Automatic dialog act segmentation
and classification in multiparty meetings,” in Proc. of ICASSP, 2005.

[7] M. Zimmermann, Y. Liu, E. Shriberg, and A. Stolcke, “Toward joint
segmentation and classification of dialog acts in multiparty meetings,”
in Proc. of MLMI Workshop, 2005.

[8] J. Makhoul, F. Kubala, and R. Schwartz, “Performance measures for
information extraction,” in Proc. of the DARPA Broadcast News Work-
shop, 1999.

[9] C. Drummond and R. Holte, “Explicitly representing expected cost:
An alternative to ROC representation,” in Proc. of SIGKDD, 2000.

[10] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki,
“The DET curve in assessment of detection task performance,” in Proc.
of Eurospeech, 1997.

[11] J. Davis and M. Goadrich, “The relationship between precision-recall
and ROC curves,” in Proc. of ICML, 2006.

[12] S. Strassel, Simple Metadata Annotation Speci cation V6.2, Linguistic
Data Consortium, 2004.

IV  188


