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ABSTRACT

Accurate retrieval of entries from large directories is a dif-

ficult task. Practical systems attempt to achieve acceptable

performance using dialog to restrict the size of the directory.

For instance, knowledge of city and state can be used to re-

strict the entries in a telephone number retrieval application.

It is shown that it is advantageous to use a voice form-filling

paradigm in which the user speaks all the field entries, first

name, last name, city, and state, in a single utterance. A two-

pass method for form-filling presented recently [1] is evalu-

ated on the directory retrieval task. A delayed network ex-

pansion and pruning method is proposed to improve the ef-

ficiency of short-list generation in the form-filling algorithm.

Experimental results demonstrate that sentence accuracies

greater than 85% can be achieved on directory sizes of upto 8

million entries, with modest computing requirements.

Index Terms— Speech recognition, information retrieval,

voice form filling

1. INTRODUCTION

Accurate recognition of fields such as people’s names or ad-

dresses is difficult because the vocabularies can be very large.

In addition, the recognition accuracy for each field has to

be very high for the overall form-accuracy to be acceptable.

Practical systems attempt to achieve acceptable performance

using dialog to restrict the size of the directory [2, 3]. In

a typical telephone directory application, location informa-

tion such as the city and state are used to restrict the en-

tries to be recognized. In such systems, since the cost of

mis-recognizing the location is very high, confirmation of the

user’s response at each stage of the dialog is important. Fur-

ther, if the user does not know the response to a particular

field such as the city, it takes one or more dialog turns for the

system to determine that information. One way of avoiding

such cumbersome dialog is to allow the user to speak all the

relevant fields necessary to obtain a specific entry in a single

utterance.

An effective and scalable method for form-filling by voice

(vForms) was presented recently to address this problem [1].

In this method, inter-field constraints are exploited to improve

ASR accuracy. Simple methods for incorporating these con-

straints include the construction of a grammar for the com-

plete form, or dynamically constructing grammars for each

field constrained by input already provided by the user. These

simple methods can get impractical for forms with many fields

and large vocabularies [2]. The novelty of vForms is the

use of a two-pass scheme to achieve (a) high form-accuracy,

(b) scalability to large vocabularies, and (c) a flexible user in-

terface that allows the user to speak all the fields of interest in

a single utterance.

The goal of this work is to evaluate the performance of

vForms on a directory retrieval task and propose ideas for im-

proving the performance of the index access scheme which is

at the core of vForms. The basic algorithm is summarized in

Sec. 2. A description of the task and implementation details

are presented in Sec. 3. Experimental results and analysis are

covered in Sec. 4.

2. VFORMS: VOICE FORM-FILLING

An entry in a form is a collection of a number of fields. Con-

straints that apply across these fields, implicitly specified by

the database of form-entries, can be exploited to improve ASR

accuracy. Incorporating these constraints in a conventional

one-pass speech recognizer becomes impractical for large data-

bases such as a national listing of first name, last name, city,

and state [2]. A two-pass form-filling algorithm first intro-

duced in [1] is described below.

1. Index generation: Create an index of valid form-entries

using index-terms such as phone n-grams. The first step

consists of converting each entry ei into a verbal form.

The verbal form incorporates transformations that help

maximize coverage of user utterances. The verbal form

of entry i is represented by a phone lattice Li. Then,

a transducer Ti is constructed that associates the entry

index i with each term t (diphone, triphone, etc.) that

appears in Li. The final index

I = Detlog (T1 ∪ T2 ∪ . . . ∪ TN ) (1)

where ∪ represents the union of transducers, andDetlog

refers to determinization in the log semiring [4]. This

step is performed off-line and the index needs to be up-

dated only when new entries are added.
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2. First-pass recognition: Obtain a phone-latticeR using

an n-gram phonotactic grammar. The database used

to train the task-specific phonotactic model is often the

same collection of phone lattices, {L1, L2, . . . , LN},
used to train the index. The n-gram model is trained

using conventional language modeling tools [5].

3. Short-list generation: Query the database using the

phone lattice result generated in the first-pass and gen-

erate a shortlist of possible database entries. The vari-

ous steps are listed below. For more details see [1].

• The costs in R are normalized such that the best path
cost is 0.

• For efficiency, only the terms that are used in the in-
dex are retained to produce a cost-normalized, query

Q = Detlog[Πo(R ◦ Tt)] (2)

where ◦ represents composition of transducers,Πo rep-

resents projection to output symbols and Tt is a trans-

ducer that retains only the terms of interest.

• The list of entry-indices that contain the terms in Q
and the associated cost is given by

I1 = Πo(Q ◦ I) (3)

The n-best lowest cost indices, computed by ⊕log over

all terms, are given by

Is = Btrop[Detlog(I1)] (4)

where Btrop represents the bestpath operation [4].

4. Rescore the shortlist using all available lexical and inter-

field constraints to get the final result.

3. IMPLEMENTATION ISSUES

Each step of the algorithm described in Sec. 2 can be opti-

mized in a number of ways. Some of these optimization ideas

are explored in this section.

3.1. Task description

Each entry in the database consists of four fields: first name,

last name, city, and state. The query consists of utterances

in which the user spoke all four fields. In order to demon-

strate the scalability of vForms, experiments were performed

using database sizes of 250 thousand, 4 million, and 8 mil-

lion entries. The baseline system is a conventional one-pass

fully-constrained (FC) recognizer in which the grammar ac-

cepts only valid entries. The baseline results were obtained

using optimized networks [6] and represent the best results

achieved on this database.

Some statistics of the database are shown in Table 1. The

distribution of index terms across form entries is very skewed.

# entries vocab n-gram # terms

250 K 85 K 3 29 K

250 K 85 K 4 228 K

4 M 400 K 3 40 K

4 M 400 K 4 511 K

Table 1. Statistics of terms and entries for a directory retrieval

task.

Terms that straddle a field boundary appear only in a few en-

tries and are very informative. Others appear in many form

entries. A cumulative distribution of the number of entries

in which a particular term appears is shown in Fig. 1 for an

index with 4M entries and about 40K terms. It is clear that

most terms appear in only a few entries, but there is at least

one term that appears in about 600K entries. If such a term

is triggered by the query, a large number of paths will be ex-

panded in Eq. 3. This limits scalability of the algorithm to

very large directories. Pruning techniques for minimizing the

number of entries that need to be processed are described in

Sec. 3.2.

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of entries / term

F
ra

ct
io

n 
of

 te
rm

s

Histogram of entry counts
Cumulative entry counts

Fig. 1. Histogram of terms for the 4M entry index. The value

of the last bin is the count of all terms that appear in > 5000
entries.

3.2. Short-list generation

Efficiency of Step 3 of vForms can be improved using a 2-

stage expansion strategy which involves delayed expansion of

entries as described below. One way of measuring the effec-

tiveness of pruning is to count the number of different entries

that are expanded during short-list generation in Eq. 3.

The i-th arc in queryQ (Eq. 3) contains the tuple (ti, ei, ci),
where ti is a term that appears in ei with an expected cost ci.
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Costs are defined as negative of log-likelihood, and the ex-

pected cost ci for a given term ti is the sum (in the log semi-

ring) of the cost of all paths that contain the term ti. The

least cost (highest likelihood) terms are expanded first. At

any stage of term expansion, an active set of entries Se =
{e1, e2, . . . , eN} are maintained ordered by the cumulative
cost

Cei
= − log

⎡
⎣ ∑
tk∈S(ei)

exp−ci

⎤
⎦ (5)

where the sum is over the subset S(ei) of terms expanded
thus far which appear in the entry ei. Entries with Cei

> τ

are pruned. The value of τ is empirically set to be a certain

fixed value above the lowest cumulative cost. Entry pruning

is likely to be most effective if the most informative terms are

processed first. The procedure used in the experiments re-

ported in this paper is as follows:

• Process terms in increasing order of acoustic cost.
• Delay processing terms which trigger more than a certain
threshold number of entries. This threshold is determined

based on a cumulative histogram of the number of entries as-

sociated with all terms in the query. A list of terms that are

not processed is maintained in a secondary list T .
• Process all the terms in the query. Entries are pruned based
on the cumulative cost after each term is expanded.

• Next, process the list of delayed terms in the list T . Entry
pruning based on cumulative cost is very effective in this step

because active entries at this stage were generated using more

informative terms in the first pass through the query terms.

This basic procedure can be refined further by incorporat-

ing a term-entropy criteria in determining the order in which

to expand the terms. One way of quantifying the information

content of terms is the idea of normalized entropy used in in-

formation retrieval [7]. A useful criterion is the term-entry

weight

wte = (1 −Ht)
cte∑

e∈Et
cte

(6)

where cte is the count of term t in entry e, Et is the set of all
indices of terms present in entry t, and Ht is the normalized

entropy of terms in the entire database with N entries and is

computed using

Ht = −
1

log(N)

N∑
e=1

cte∑
e
cte

log(
cte∑
e
cte

). (7)

Incorporation of this weight (− logwte) in the entry cost cal-

culation further improves pruning efficiency. The dynamic

ranges of the acoustic cost and the entropy costs are not com-

parable and a scale factor, reminiscent of grammar scale in

ASR, is empirically determined.

The effectiveness of the pruning strategies is demonstrated

on the 4M entry task (Table 2). It is clear that delayed pruning

is very effective in reducing the number of entries expanded

without any impact on the accuracy. In fact, the delayed pro-

cessing of terms should give exactly the same results as with-

out delayed processing except for any correct entry that gets

pruned during the first stage of expansion.

Pruning baseline +delayed +entropy

# Entries Expanded 920K 260K 170K
Sent. Acc. (%) 90.5 90.5 90.4

Table 2. Results demonstrate the effectiveness of pruning on

the 4M entry task.

4. EXPERIMENTS

Results are presented for indices generated using 3-grams. A
4-gram, unsmoothed phonotactic language model [5] is used
in the first pass. This model is trained on the set of phone

lattices {L1, L2, . . . , LN} representing the form entries. The
size of the grammar, G, as well as the fully-composed net-

work used by the decoder, CLG, for various database sizes

are shown in Table 3. For comparison, the G and CLG for a

traditional fully-constrained (FC) recognition network is also

shown. It is clear that the memory requirements of the first-

# form vocab phonotactic FC

entries size G CLG G CLG

250K 85K 4.4M 13M 8.4M 41M

4M 400K 9.1M 27M 112M 363M

8M 560K 11.0M 31M 220M 650M

Table 3. Comparison of memory sizes of grammars and

recognition networks for phonotactic (4-gram) first-pass
recognition and fully-constrained recognizers. K and M stand

for 103 and 106 and interpreted as kilo/mega bytes when ref-

erencing memory sizes.

pass scales well with vocabulary size. It is clear that FC net-

works increase in size significantly for this case, whereas the

phonotactic model size increases only slightly. If the static

size of the network alone were the issue, it can be addressed

in a number of ways. One could compose the network dy-

namically at the cost of increased real-time. Other options in-

clude maintaining compressed networks (using standard com-

pression) techniques and uncompressing parts of the network

on-demand. However, the problem that is more difficult to

address is the dynamic memory allocated during decoding.

In the case of the 4M -entry database, the dynamic memory
size for the 4M -entry FC system grows larger than 0.2GB
for some utterances at large beams. The dynamic memory re-

quirements for the index access stage of vForms is minimal

(< 10MB) by comparison. The shortlist sizes used in these
experiments is only 200 which makes the second-pass recog-
nition trivial.
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The test database consists of 3668 sentences collected over

the telephone in which the users speak the first name, last

name, city, and state. The sentence accuracy of the various

systems are shown in Table 4.

# form FC vForms

entries sent. acc.(%) rt factor sent acc (%) rt factor

250K 94.6 0.40 95.1 0.44

4M 90.5 0.63 90.4 0.61

8M 85.2 0.75 85.2 0.68

Table 4. Comparison of sentence accuracy and real-time fac-

tor for two systems: traditional fully-constrained grammar

(FC), and two-pass vForms. Real-time factor is defined as

the ratio of the time taken to process the audio to the duration

of the audio (small factors indicate faster ASR). Note that the

accuray and real-time factors for the two systems are com-

parable, but the memory requirements for the FC system are

significantly greater (Table 3).

It is clear from Table 4 that the vForms system is com-

petitive in accuracy and speed with a traditional system using

a fully-constrained grammar, and requires significantly less

memory. This result is significant because two-pass recog-

nition schemes have almost never matched the real-time per-

formance of fully-constrained single-pass recognizers. This

is because constraints are invoked later in two-pass systems

than in one-pass systems. One reason vForms is efficient is

because the first-pass recognizer is run with a small beam. If

only the top choice phone string is used for short-list gener-

ation, this would increase the error rate significantly. Since a

phone lattice is used to generate the query, it is only necessary

for the correct path to be present in the lattice for the overall

system accuracy to remain high. Having demonstrated the

advantages of vForms over conventional ASR, the next step

is to explore the use of vForms for much larger listings such

as state-wide or nation-wide telephone directories where con-

ventional FC systems are infeasible.

A histogram of the the rank of the correct entry in the

shortlist is plotted in Fig. 2 for the 4M -entry database. The
correct entry ranks first almost 75% of the time, which shows

that index access using n-gram terms is extremely effective.

All the rank values of > 100 have been included in the last
bin of the histogram. This shows that the correct entry ranks

very low in the shortlist about 7% of the time. It is not entirely

clear why this is the case. It is possible that some of the terms

that appear in those entries are missing in the query. Further

analysis is necessary to determine ways of recovering those

entries.

5. CONCLUSIONS

The vForms algorithm was shown to be competitive in terms

of real-time performance and accuracy with a conventional
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Fig. 2. Histogram of the rank of correct entry in the shortlist.

fully-constrained one-pass system. The new approach scales

well with the vocabulary size and the size of the directory,

whereas conventional fully-constrained ASR systems become

impractical for large directories. Future work will be directed

at exploring the use of vForms on much larger applications

such as the retrieval of entries from state-wide or nation-wide

directory listings.
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