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ABSTRACT

Partially observable Markov decision processes (POMDPs) provide
a principled mathematical framework for modelling the uncertainty
inherent in spoken dialog systems. However, conventional POMDPs
scale poorly with the size of state and observation space. This pa-
per describes a variation of the classic POMDP called the Hidden
Information State (HIS) model in which belief distributions are rep-
resented ef ciently by grouping states together into partitions and
policy optimisation is made tractable by using a master to summary
space mapping. An implementation of the HIS model is described
for a Tourist Information application and aspects of its training and
operation are illustrated.

Index Terms— statistical dialog modelling; partially observable
Markov decision processes (POMDPs)

1. INTRODUCTION

Conventional spoken dialog systems operate by nding the most
likely interpretation of each user input, updating some internal rep-
resentation of the dialog state and then outputting an appropriate re-
sponse. Error tolerance depends on using con dence thresholds and
where they fail, the dialog manager must resort to quite complex
recovery procedures. Attempts have been made to optimise within
this framework using MDPs [1, 2]. However, the lack of an explicit
model for representing the inherent uncertainty in the users input and
its subsequent interpretation severely limits what can be achieved.

Rather than MDPs, Partially Observable MDPs (POMDPs) po-
tentially provide a much more powerful framework for modeling di-
alog systems since they provide an explicit represention of uncer-
tainty [3, 4]. The structure of a POMDP-based dialog system is
outlined in Fig 1. It is assumed that the machine’s internal repre-
sentation of the dialog state must capture the user’s last input dialog
act au, the user’s goal su, and some record of the dialog history
sd. Since sm can never be known with certainty, the dialog man-
ager maintains a distribution over all possible values called a belief
state b(sm). This belief state is updated every turn and its value
is input to a policy which determines the next machine action am.
By associating rewards with states and actions, this policy can be
optimised to achieve the desired design criteria. Since the dialog
manager is maintaining a distribution over all possible dialog states,
it is straightforward to accommodate not just the most likely inter-
pretation of au but a distribution over many possible au. Thus, the
POMDP formalism provides a complete and principled framework
for modelling the inherent uncertainty in a spoken dialog system and
optimising its performance. Furthermore, it naturally accommodates
N-best recognition outputs and associated con dence scores[5, 6].

The use of POMDPs for any practical system is, however, far
from straightforward. Firstly, in common with MDPs, the state space
of a practical SDS is very large and if represented directly, it would
be intractable. Secondly, a POMDP with state space cardinalityn+1
is equivalent to an MDP with a continuous state space b ∈ �n. Thus,
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Fig. 1. Abstract view of a POMDP-based spoken dialog system

a POMDP policy is a mapping from partitions in n-dimensional be-
lief space to actions. Not surprisingly these are extremely dif cult to
construct and whilst exact solution algorithms do exist [7], they do
not scale to problems with more than a few states/actions.

This paper describes a form of POMDP which can be scaled
to support practical dialog systems. It is inspired by the Informa-
tion State (IS) update approach to dialog system implementation [8]
in which the IS itself is hidden. Hence it is called the Hidden In-
formation State (HIS) model. The practical implementation of the
HIS system depends on two key ideas. Firstly, a belief distribution
over an extremely large state space can be represented ef ciently by
grouping states together into partitions and then splitting partitions
on demand as the dialog evolves. Secondly, ef cient policy optimi-
sation can be achieved by mapping between the full state space and
a much smaller and more tractable summary space.

2. THE HIDDEN INFORMATION STATE MODEL

2.1. POMDP Basics

Formally, a Partially Observable MDP is de ned as a tuple
{Sm, Am, T, R,O, Z, λ, b0} where Sm is a set of machine states;
Am is a set of machine actions; T is a transition probability
P (s′m|sm, am); R de nes the expected (immediate, real-valued)
reward r(sm, am); O is a set of observations; Z is an observa-
tion probability P (o′|s′m, am); λ is a geometric discount factor
0 ≤ λ ≤ 1; and b0 is an initial belief state.

A POMDP operates as follows. At each time-step, the machine
is in some unobserved state sm ∈ Sm. Since sm is not known
exactly, a distribution over states is maintained called a belief state
such that the probability of being in state sm given belief state b is
b(sm). Based on the current belief state b, the machine selects an
action am ∈ Am, receives a reward r(sm, am), and transitions to
a new (unobserved) state s′m, where s′m depends only on sm and
am. The machine then receives an observation o′ ∈ O which is
dependent on s′m and am. Finally, the belief distribution b is updated
based on o′ and am as follows:

b
′(s′m) = k · P (o′|s′m, am)

�

sm∈Sm

P (s′m|am, sm)b(sm)(1)
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where k is a normalisation constant[7]. The rst term on the RHS of
(1) is called the observation model and the term inside the summa-
tion is called the transition model. Maintaining this belief state as
the dialog evolves is called belief monitoring.

At each time step t, the machine receives a reward r(bt, am,t)
based on the current belief state bt and the selected action am,t. The
cumulative, in nite horizon, discounted reward is called the return
and it is given by:

R =

∞�

t=0

λ
t
r(bt, am,t) =

∞�

t=0

λ
t
�

sm∈Sm

bt(sm)r(sm, am,t). (2)

Each action am,t is determined by a policy π(bt) and building a
POMDP system involves nding the policy π∗ which maximises the
return.

2.2. HIS Belief Monitoring

In a spoken dialog system, the observation o is the estimate of the
user dialog act output by the speech understanding component. In
the general case, this will be an N-best list of hypothesised user acts,
each with an associated probability, i.e.

o = [(a1u, p1), (a
2

u, p2), . . . , (a
N
u , pN)] (3)

As indicated in the introduction, the machine state sm in a spo-
ken dialog system can be factored into three components sm =
[su, au, sd]. Substituting this factored form into the rst term in (1)
and making reasonable independence assumptions gives

P (o′|s′m, am) = P (o′|s′u, a
′

u, s
′

d, am) = P (o′|a′u) (4)

This is the HIS observation model and it can be approximated as
P (o|au) = pi where au = aiu in the N-best list. To guard against
very poor recognition causing the correct value of a′u to be dropped
from the observation altogether, a null action is always included rep-
resenting all of the user acts not in the N-best list.

Substituting the factored form of sm into the transition model
and making reasonable independence assumptions yields

P (s′m|sm, am) = P (s′u, a
′

u, s
′

d|su, au, sd, am)

= P (s′u|su, am)P (a′u|s
′

u, am)P (s′d|s
′

u, a
′

u, sd, am) (5)

In the HIS model, a user goal is deemed to be the speci c entity that
the user has in mind. For example, in a tourist information system,
the user might be wishing to nd “a moderately priced restaurant
near the theatre”. The user would interact with the system, effec-
tively re ning his or her query until an appropriate establishment
was found. The duration of a dialog is therefore de ned as being the
interaction needed to satisfy a single goal. Hence by de nition, the
transition function for su in (5) simpli es trivially to a delta function,
i.e.

P (s′u|su, am) = δ(s′u, su). (6)

To further simplify belief updating, the HIS model assumes that
at any time t, the space of all user goals Su can be divided into a
number of equivalence classes where the members of each class are
tied together and are indistinguishable. These equivalence classes
are called partitions. Initially, all states su ∈ Su are in a sin-
gle partition p0. As the dialog progresses, this root partition is re-
peatedly split into smaller partitions. This splitting is binary i.e.
p → {p′, p − p′} with probability P (p′|p). Since multiple splits
can occur at each time step, this binary split assumption places no

restriction on the possible re nement of partitions from one turn to
the next.

Given that user goal space is partitioned in this way, beliefs can
be computed based on partitions of Su rather than on the individual
states of Su. Initially the belief state is just b0(p0) = 1. Whenever a
partition p is split, its belief mass is reallocated as,

b(p′) = P (p′|p)b(p) and b(p− p
′) = (1− P (p′|p))b(p) (7)

Note that this splitting of belief mass is simply a reallocation of ex-
isting mass, it is not a belief update, rather it is belief re nement.

Substituting (4), (5), (6), into (1) and summing over partitions
leads to the update equation for the HIS model [9]

b
′(p′, a′u, s

′

d) = k · P (o′|a′u)� �� �
observation

model

P (a′u|p
′
, am)� �� �

user action
model

·
�
sd

P (s′d|p
′
, a
′

u, sd, am)� �� �
dialog model

P (p′|p)b(p, sd)� �� �
belief re nement

(8)

where p is the parent of p′.
As shown by the labelling in (8), the probability distribution for

a′u is called the user action model. It allows the observation proba-
bility that is conditioned on a′u to be scaled by the probability that the
user would speak a′u given the goal s′u and the last system prompt
am. In the current implementation of the HIS system, user dialog
acts take the form act(a = v) where act is the dialog type, a is an
attribute and v is its value [for example, request(food=chinese)], the
user action model is then approximated by

P (a′u|p
′
, am) ≈ P (T (a′u)|T (am))P (M(a′u)|p

′) (9)

where T (·) denotes the type of the dialog act and M(·) denotes
whether or not the dialog act matches the current partition p′. The
rst term on the RHS of (9) is estimated from a dialog corpus, the

second term is set to 1 if the act matches and zero otherwise.
The dialog model is a deterministic encoding based on a simple

grounding model. It yields probability one when the updated dia-
log hypothesis (ie a speci c combination of p′, a′u, sd and am) is
consistent with the history and zero otherwise.

2.3. Summary Space Mapping and Optimisation

Although the use of state partitioning makes belief monitoring
tractable for practical dialog systems, the state space itself must be
reduced to make policy optimisation tractable. The solution to this
lies in the observation that most reasonable system responses will
focus on just the most likely states. This suggests maintaining two
coupled state spaces: the full space called the master state space and
a much simpler space called the summary state space[10]. The sum-
mary state space consists of the top 1 or 2 user goal states (su) from
master space and a simpli ed encoding of the user action au and di-
alog history sd. The summary action space consists of a list of high
level abstractions of possible machine responses. A dialog turn then
consists of rst updating the belief state by evaluating (8) in mas-
ter space. The updated belief state b is then mapped into a summary
state b̂ where an optimised dialog policy is applied to compute a new
summary machine action âm. The summary machine action is then
mapped back into master space where it is converted to a speci c
machine dialog act am and a response is output to the user.

Policy optimisation in the HIS model utilises a grid-based dis-
cretisation of summary belief space and on-line batch ε-greedy pol-
icy iteration. Given an existing policy π, dialogs are executed and
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entity → venue(name,type,area) 1.0
type → bar(drinks,music) 0.4
type → restaurant(food,pricerange) 0.3
area = (central|east|west| . . .)
food = (Italian|Chinese| . . .)

Table 1. Example Ontology Rules

machine actions generated according to π except that with probabil-
ity ε a random action is generated. The system maintains a set of
belief points {b̂i}. At each turn in training, the nearest stored belief
point b̂k to b̂ is located using a distance measure. If the distance is
greater than some threshold, b̂ is added to the set of stored points and
b̂k = b̂. The sequence of points b̂k traversed in each dialog is stored
in a list. Associated with each b̂i is a function Q(b̂i, âm) whose
value is the expected total reward obtained by choosing summary
action âm from state b̂i. At the end of each dialog, the total reward
is calculated and added to an accumulator for each point in the list,
discounted by λ at each step. On completion of a batch of dialogs,
the Q values are updated according to the accumulated rewards, and
the policy updated by choosing the action which maximises each Q
value. The whole process is then repeated until the policy stabilises.
Since even the summary state space is very large, around 105 dialogs
are required for policy convergence and learning using real users is
not practical. Hence, a user simulator is used for training.

3. AN IMPLEMENTATION

To demonstrate the practical application of the HIS model, a com-
plete working system has been built for the Tourist Information
Domain which can supply information about hotels, restaurants,
bars and amenities in a ( ctitious) town. Inputs and outputs to
the dialog manager are in the form of dialog acts which con-
sist of an act type such as “inform”, “request”,etc. and one or
more attribute value pairs. For example, an utterance such as “I’d
like to nd a Chinese restaurant on the east side of town” would
get mapped by the semantic decoder into the user dialog act “re-
quest(restaurant,food=Chinese,area=east)”.

3.1. Partition Splitting

The space of all user goals is described by a set of simple ontological
rules of the form illustrated in Table 1. These rules describe the
hierarchical structure of the data and the speci c values which can
be assigned to terminal nodes.1 Since non-terminal nodes can be
expanded in different ways, node expansion rules (indicated by →)
have an associated prior probability corresponding to the partition
split probability P (p′|p) described above.

Partitions of user goal space are represented by a forest of trees
where each tree represents a single partition. This forest of trees
is stored in such a way that no partition is duplicated and the sum
of the probability of all partitions is always unity. At the start of a
dialog, there is just one partition represented by a single root node
with belief mass unity. Each incoming user act is matched against
each partition in turn. If there is no match, the ontology rules are
consulted and the system attempts to create a match by expanding
the tree. This expansion will result in partitions being split and their
belief mass redistributed between the original partition and the new
partition as in equation (7). This is illustrated in Fig 2 in which a
partition representing a generic “venue” is split as the result of the
user requesting a “bar”. The original “type” node had a probability

1It should be noted that apart from the database itself, there is no other
application dependent data or code in the dialog manager.

mass of 1.0 and this is redistributed according to the prior in the
corresponding ontology rule, 0.4 to the new partition and 0.6 remains
with the original. If the user subsequently mentioned another type
of venue, this remaining mass of 0.6 would be split again.

request(bar)

1.0
name type area

entity

venue

drinks musicbar

type
0.4

0.6

Fig. 2. Illustration of Partition Splitting

3.2. The Dialog Cycle

The overall operation of the prototype HIS system is summarised in
Fig 3. Each user utterance is decoded into an N-best list of dialog
acts. Each incoming act plus the previous system act are matched
against the forest of user goals and partitions are split as needed.
Each user act au is then duplicated and bound to each partition p.
Each partition will also have a set of dialog histories sd associated
with it. The combination of each p, au and updated sd forms a new
dialog hypothesis hk whose beliefs are evaluated using (8).
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Fig. 3. Overview of Prototype HIS Dialog Manager

Once all dialog hypotheses have been evaluated and any du-
plicates merged, the master belief state b is mapped into summary
space b̂ and the nearest policy belief point is found. The associated
summary space machine action âm is then mapped back to master
space and the machine’s actual response am is output. The cycle
then repeats until the user’s goal is satis ed.

3.3. Training
Training follows the Q-learning approach described in section 2.3.
Each policy iteration uses a batch size of 5000 dialogs, the discount
factor is 0.95 and epsilon is held constant at 0.1. The reward func-
tion returns−1 per system turn and +20 if the system recommends a
venue that matches all the constraints in the user’s goal. In all cases,
the initial policy is random. A user simulator is used to generate re-
sponses to system actions. It has two main components: a User Goal
and a User Agenda. At the start of each dialog, the goal is randomly
initialised with requests such as “name”, “addr”, “phone” and con-
straints such as “type=restaurant”, “food=Chinese”, etc. The agenda
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Fig. 4. Average return for various user act error rates vs number of
training dialogs

stores the dialog acts needed to ellicit this information in a stack-like
structure which enables it to temporarily store actions when another
action of higher priority needs to be issued rst. This enables the
simulator to refer to previous dialog turns at a later point. To gener-
ate a wide spread of realistic dialogs, the simulator reacts wherever
possible with varying levels of patience and arbitrariness.

Speech understanding errors are simulated at the dialog act level.
The user action is fed through a Scrambler which uses a set of con-
fusion matrices to generate an N-best list of parsed recognition hy-
potheses with associated con dence scores at a given error rate.

3.4. Results
Fig. 4 shows the average return achieved by the HIS system at dif-
fering user act error rates when tested against the user simulator as a
function of the number of dialogs used for training. As can be seen
learning increases rapidly at rst and then asymptotes. At higher
error rates, learning is slower and the asymptotic return reduces. A
typical dialog containing a number of recognition errors is shown in
Fig. 5. Initially, the system wrongly believes that the user is look-
ing for a hotel. Around turn 4, the systems belief in the user’s need
for a hotel vs a restaurant is similar, it therefore asks the user to
choose. However, the user’s decoded response is again ambiguous
so the system con rms again before proceeding. Meanwhile, con-
dence in “Russian food” has been accumulating and by turn 6, a

request for an expensive restaurant serving Russian food is the dom-
inant top-ranked hypothesis. So the system proceeds to make a rec-
ommendation.

S1 Hello, how can I help you?
U1 I’m looking for a restaurant.
S2 You want a hotel? Whereabouts?
U2 I want a restaurant.
S3 Do you want a hotel?
U3 I want a restaurant.
S4 Do you want a hotel or a restaurant?
U4 A restaurant with Russian food.
S5 You want a restaurant?
U5 Yes, with Russian food.
S6 You want a restaurant serving Russian food?
U6 Yes, somewhere nice and expensive.
S7 The Siberian Tiger is very good.
U7 Ok, where is it?
S7 It’s on West Loop.
U7 Ok, thank you goodbye.

Fig. 5. Example Dialog (User Act Err Rate≈ 15%)

4. CONCLUSIONS

This paper has outlined a new Hidden Information State (HIS) ap-
proach to statistical dialog management which adapts the POMDP
formalism in order to scale to real world problems. The HIS ap-
proach provides a number of potential advantages. It naturally inte-
grates N-best recognition hypotheses and con dence measures with-
out setting thresholds or requiring explicit strategies for exploring
options. It is robust to recognition errors and because it maintains
multiple recognition hypotheses, it does not require elaborate dialog
strategies to recover from errors. For database enquiry type applica-
tions it is entirely application independent. Finally, by logging con-
versations and retraining the internal models, it should be capable of
adaptively improving over time.

A working prototype system has been implemented, trained and
evaluated using a simulator and through informal live testing. Start-
ing from a random policy, the system can learn a competitive strat-
egy without any manual intervention. Furthermore, the system ac-
cumulates evidence for each possible user goal over time, making
it resilient to errors without explicit programming of recovery pro-
cedures. A user trial is planned for the fall as part of the EU Talk
Project. The system will then be benchmarked against a hand-crafted
system and an MDP-based system. We look forward to reporting the
results of this trial in a future paper.
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