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ABSTRACT

In this paper, we investigate bootstrapping part-of-speech (POS) tag-
gers for Mandarin broadcast news (BN) transcripts using co-training,
by iteratively retraining two competitive POS taggers from a small
set of labeled training data and a large set of unlabeled data. We com-
pare co-training with self-training and our results show that the per-
formance using co-training is signi cantly better than that from self-
training and these semi-supervised learning methods signi cantly
improve tagging accuracy over training only on the small labeled
seed corpus. We also investigate a variety of example selection ap-
proaches for co-training and nd that the computationally expensive,
agreement-based selection approach and a more ef cient selection
approach based on maximizing training utility produce comparable
tagging performance from resulting POS taggers. By applying co-
training, we are able to build effective POS taggers for Mandarin
transcribed speech with the tagging accuracy comparable to that ob-
tained on newswire text.

Index Terms— POS tagging, Co-training, Self-training, Man-
darin speech recognition, Active learning

1. INTRODUCTION

Part-of-speech (POS) tagging is a prerequisite for many advanced
natural language processing tasks, for example, name entity recogni-
tion, parsing, and sentence boundary detection. Much effort has been
expended to develop high-quality POS taggers, but the majority has
been applied only on newswire text, largely because of the availabil-
ity of labeled newswire training data. However, many tasks require
applying POS taggers to a new domain with little or no manual an-
notations, for example, transcribed speech. Clark et al. [1] explored
using co-training to bootstrap POS taggers using a small in-domain
labeled seed corpus and a large set of unlabeled data. Although their
work shows the effectiveness of co-training for improving POS tag-
ging, their investigations were conducted within the newswire text
genre. Mieskes and Strube [2] used four POS taggers originally
trained on newswire text to tag a corpus of transcribed multiparty
spoken dialogues. However, their work was focused on using manual
corrections on the tags assigned by the taggers to evaluate the tag-
gers and retrain them. To our knowledge, there has been little effort
on exploring methods for applying semi-supervised learning meth-
ods like co-training to POS tagging on transcribed speech and eval-
uations of the tagging performance. Our work is aimed at helping
to generate rich syntactic and semantic annotations for improving
Mandarin broadcast news (BN) ASR and machine translation (MT)
performance. To support building language models and translation

models employing POS information for ASR and MT, we have been
focusing on improving POS tagging on Mandarin BN transcripts. In
the rest of the paper, Section 2 describes the co-training and self-
training algorithms, as well as example selection approaches used in
co-training. Section 3 brie y describes the two POS taggers used in
this work. Experimental results, discussion, and conclusions appear
in Section 4.

2. CO-TRAINING AND SELF-TRAINING

2.1. General co-training algorithm

Co-training was rst introduced by Blum and Mitchell [3] as a
weakly supervised method. It can be used for bootstrapping a model
from a seed corpus of labeled examples, which is typically quite
small, augmented with a much larger amount of unlabeled exam-
ples, by exploiting redundancy among multiple statistical models
that generate different views of the data. Blum and Mitchell [3]
showed that co-training is probably approximately correct (PAC)
learnable when the two views are individually suf cient for clas-
si cation and conditionally independent given the class. Abney [4]
proved that a weaker independence assumption on the multiple clas-
si ers than Blum and Mitchell’s quite restrictive assumption could
still allow co-training to work well. There has been much effort on
investigating the ef cacy of co-training in different domains and ap-
plications [4, 5]. The co-training algorithm developed by Pierce and
Cardie [5] is presented in Algorithm 1 in this paper.

Input: S is a seed set of labeled data.
Lh� is labeled training data for h�.
Lh� is labeled training data for h�.
U is the unlabeled data set.
C is the cache holding a small subset of U .
Lh� �� S1
Lh� �� S2
Train classi er h� on Lh�3
Train classi er h� on Lh�4
repeat5

Randomly partition U into C where jCj � u and U �6
Apply h�� h� to assign labels for all examples in C7
Select examples labeled by h� and add to Lh�8
Train h� on Lh�9
Select examples labeled by h� and add to Lh�10
Train h� on Lh�11
U �� U �12

until U is empty13

Algorithm 1: General co-training algorithm.
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2.2. Example selection approaches for co-training

In Algorithm 1, when calling the classi er that provides additional
training data for the opposite classi er the teacher and the opposite
classi er the student, since the labeled output from both classi ers
h� and h� is noisy, an important question is which newly labeled
examples from the teacher should be added to the training data pool
of the student. This issue of example selection plays an important
role in the learning rate of co-training and the performance of result-
ing classi ers. In this paper, we investigate four example selection
approaches. The rst is naive co-training, which simply adds all ex-
amples in the cache labeled by the teacher to the training data pool
of the student. The single parameter that needs to be optimized (on a
held-out set) for this example selection approach on the classi cation
accuracy is the cache size, u.

The second approach, agreement-based co-training [6, 1], is
to select the subset of the labeled cache that maximizes the agree-
ment of the two classi ers on unlabeled data. The pseudo-code for
agreement-based example selection algorithm is presented in Algo-
rithm 2. The student classi er is the one being retrained and the
teacher classi er is the one remaining static. During the agreement-
based selection procedure, we repeatedly sample from all possible
subsets of the cache, by rst choosing the size of the subset and then
randomly choosing examples from the labeled cache based on the
size. In this algorithm, if h� is trained on the updated Lh� after
adding output from h�, then the most recent version of h� is used
to measure agreement and vice versa. Hence, this approach aims to
improve the performance of the two classi ers alternatively, instead
of simultaneously. Note that the agreement rate on U , denoted A,
is the number of times each token in the unlabeled set U is assigned
the same label by both classi ers h� and h�.

Input: C is a cache of examples labeled by the
teacher classi er.

U is a set of examples, used for measuring agreement.
cmax �� �1
Amax �� �2
iter=13
repeat4

Randomly sample c � C5
Retrain student classi er using c as additional6
data
A=the new agreement rate on U7
if A � Amax then8

Amax �� A9
cmax �� c10

end11
iter++12

until iter=n13
return cmax14

Algorithm 2: Agreement-based example selection ap-
proach [1].

Besides naive co-training and the agreement-based example se-
lection approach, we proposed two different methods. One is to
select the top n examples with highest scores (based on a scoring
function) when labeled by the teacher to add to the training pool of
the student. This approach has been employed in many co-training
applications. We denote it max-score. The underlying intuition is
to select examples that are reliably labeled by the teacher for the
student. However, Hwa’s work on active learning [7] has shown that
accurately labeled examples may not always been useful for improv-
ing a classi er’s performance. Instead, examples with high training

utility could satisfy this request. To combine accuracy and training
utility, we de ned another example selection criterion, which selects
examples with scores within the m percent of top high-scoring la-
beled examples by the teacher and within the n percent of bottom
low-scoring labeled examples by the student. We denote it max-t-
min-s. The intuition for this approach is that the newly labeled data
should not only be reliably labeled by the teacher but also should
be as useful and compensatory as possible for the student. During
empirical evaluations of these example selection methods, control
parameters, e.g., n and m, in these approaches, are optimized on a
heldout data set with respect to the performance of resulting classi-
ers after co-training.

2.3. Self-training algorithm

We also compare the performance of co-training to self-training.
There are a variety of de nitions of self-training in the literature and
we adopted that of Nigam and Ghani [8]. The self-training algorithm
is shown in Algorithm 3. Self-training in this work simply adds all
examples in the labeled cache to the training pool in each iteration.

Input: S is a seed set of labeled data.
Lh� is labeled training data for h�.
U is the unlabeled data set.
C is the cache holding a small subset of U .
Lh� �� S1
Train classi er h� on Lh�2
repeat3

Randomly partition U into C where jCj � u4
and U �

Apply h� to assign labels for all examples in5
C

Select examples labeled by h� and add to Lh�6
Train h� on Lh�7
U �� U

�8
until U is empty9

Algorithm 3: General self-training algorithm.

3. TWO POS TAGGERS

The two POS taggers we use in this paper are a Hidden Markov
Model (HMM) tagger and a maximum-entropy (ME) tagger.

3.1. H1: HMM tagger

The HMM tagger used for this effort is a second-order HMM tag-
ger initially developed by Thede and Harper [9]. This second-order
HMM tagger, initially designed for English, used trigram transition
probability estimations, P �tijti��ti���, and trigram emission prob-
ability estimations, P �wijti��ti�. For estimating emission proba-
bilities for unknown words (i.e., a word that does not appear in the
training data), a weighted sum of P �ski jti��ti� was used as an ap-
proximation, where ski is the k-th suf x of word wi (the rst suf-
x of word wi is its last character). The interpolation weights for
smoothing transition and emission probabilities were estimated us-
ing a log-based function introduced in [9]. In this work, we achieved
improvement on Chinese newswire POS tagging accuracy after re-
ning this model by: replacing P �wijti��ti� with context-enriched
P �wijti��ti�

�

� �P �wi��jti��ti���
�

� for both known and unknown
words; also, for unknown words, replacing P �wijti��ti� by the ge-
ometric mean of P �cki jti��ti�, where cki is the k-th character of
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the word wi, for all of the characters of the word wi (note that
P �wi��jti��ti��� is calculated similarly). In Chinese, there is
no in ection and derivation of words as in English. However, the
last few characters of a Chinese word may still provide hints for
propernouns, nouns, and verbs. We empirically compared the use
of last few characters to all characters in a word for unknown word
emission probability estimation and found that using all characters
produced the best tagging accuracy and the use of last few charac-
ters also provides smaller but consistent improvement on the POS
tagging accuracy.

3.2. H2: ME tagger

We built a maximum-entropy POS tagger that uses features from
Ratnaparkhi’s ME tagger [10] adapted for Mandarin POS tagging.
In our ME tagger, the context used for predicting the POS tag of a
word wi among a sentence w� � � � wn with tags t� � � � tn is de ned
as hi � fwi��, wi��, ti��, ti��, wi, wi��, wi��g. We modi ed
the features for rare words in [10] by collecting a set of the most
frequent last one character suf xes (i.e., the last character of a word)
and last two character suf xes and created features for rare words
with respect to including members in this set of rare-word suf xes,
denoted S . The adapted features on the current history hi are pre-
sented in Table 1. Different from the HMM tagger which is a joint
model, the ME tagger uses a conditional model. Also, arbitrary fea-
tures derived from the context can be easily added to the ME tagger,
for example, word identities from either side of the target word. Be-
sides this theoretical comparison, in Section 4, we will empirically
examine whether the two taggers are suf ciently different based on
their tagging output.

Table 1. Features on the current history hi used in the ME tagger.
Given the current history, a feature is an indicator function of certain
variables on the history. X , Y , and T in the table are instantiations
of word and tag identities that can be automatically collected from
the training data.

Condition Features
wi is not rare wi � X and ti � T

wi is rare wi contains a suf x in S and ti � T

�wi ti�� � X and ti � T

ti��ti�� � XY and ti � T

wi�� � X and ti � T

wi�� � X and ti � T

wi�� � X and ti � T

wi�� � X and ti � T

4. EXPERIMENTS

4.1. Data

In this paper, the data set of labeled examples is a text corpus with
each sentence annotated with POS tags. For Mandarin POS tag-
ging, the most recently released Chinese Penn Treebank 5.2 (denoted
CTB, released by LDC) contains around 500K words, 800K charac-
ters, 18K sentences, and 900 data les, including articles from the
Xinhua news agency, Information Services Department of HKSAR,
and Sinorama magazine (Taiwan). The format of CTB is similar to
the Penn English Treebank and it was carefully annotated. In this
work, we rst compare the performance of the two POS taggers on
the CTB corpus, and for self-training and co-training, we always in-
clude CTB in the initial training pool for each tagger. Among the 33

POS tags used in CTB1, we discriminated punctuation (POS tag as
PU) by creating new POS tags for each distinct word type tagged as
PU in CTB (e.g., PU-?). In total, we used 92 POS tags.

The creation of the small seed corpus and evaluation test set
for Mandarin BN transcripts is a non-trivial procedure. Since basi-
cally there was no hand-annotated POS-tagged Mandarin BN corpus
available, we created one for this work using the following proce-
dure: rst, we selected the set of BN transcripts from the DARPA
GALE program2 Mandarin ASR/MT development test set, where we
used the four dev show transcripts from the GALE Year 1 BN audio
release. This text set, which includes about 17K words (about 79K
characters), is our manual annotation corpus. Second, the HMM tag-
ger was used to automatically assign POS tags to this corpus. Then,
three annotators (all are native speakers of Mandarin with expertise
on POS tagging) proof-read the pre-tagged corpus and xed tagging
errors. Since automatic word segmentation [11] was conducted on
this corpus before the pre-tagging step, we also xed transcription
errors and word segmentation errors. Each annotator independently
conducted manual annotations on the corpus and then an Emacs an-
notation tool adopted from LDC was used to highlight the differ-
ences between annotators’ decisions. The inter-annotator agreement
from the rst round was suf ciently high (estimated � � ���)3,
demonstrating that the automatically assigned tags can be reliably
corrected by annotators. Differences between annotators were dis-
cussed and all disagreements appearing in the rst round were re-
solved in the end. We extracted three disjoint sets from this tagged
corpus: the rst served as the small Mandarin BN seed corpus (400
sentences, 8K words), the second was used as the POS-eval test
set (400 sentences, 6K words), and the rest set (163 sentences, 3K
words) was used as a heldout set for optimizing parameters for co-
training, for example, n andm for the max-t-min-s approach.

The large set of unlabeled data includes the following sources:
the HUB4 1997 Mandarin BN acoustic transcripts, the LDC Chinese
TDT2, TDT3, TDT4 corpora, GALE Year 1 Quarter 1, 2, and In-
terim release of BN audio transcripts, Multiple-Translation Chinese
Corpus part 1, 2, and 3, and Chinese Gigaword corpus. Note that the
word segmentation algorithm presented in [11] was applied and the
unlabeled data was segmented into 750M words (34M sentences) of
text.

Table 2. Comparison of the average 10-fold cross-validation tagging
accuracy (%) on CTB from the HMM tagger and ME tagger. Known
word, unknown word, and overall accuracies are included.

Tagger Known Unknown Overall
HMM 95.0 76.2 94.3
ME 94.2 75.1 93.1

4.2. Co-training and self-training results

Table 2 presents the averaged 10-fold cross-validation tagging ac-
curacy from the two taggers on CTB. The HMM tagger outperforms

1The part-of-speech tagging guidelines for the Penn Chinese Treebank
(3.0), http://www.cis.upenn.edu/ chinese/posguide.3rd.ch.pdf.

2The goal of the GALE program is to develop computer software tech-
niques to analyze, interpret, and distill information from speech and text in
multiple languages.

3The Kappa Statistics is an index which compares the agreement against
that which might be expected by chance. Kappa can be thought of as the
chance-corrected proportional agreement, and possible values range from +1
(perfect agreement) via 0 (no agreement above that expected by chance) to
-1 (complete disagreement).
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the ME tagger, but both taggers are competitive on tagging newswire
text. We examined the output of the two taggers on CTB and found
that they made quite different errors. Hence, we hypothesized that
the two taggers are suf ciently different to allow co-training to pro-
duce reasonable performance. Before conducting co-training or self-
training, we found when using the two taggers trained on the entire
CTB corpus to predict tags on the POS-eval test set, none of them
gave satisfactory performance, as shown in Table 3. After adding
the small seed corpus for training, the accuracy for both taggers was
improved by about 10% absolutely. These results demonstrate the
signi cant mismatch on style and word use between the newswire
and BN genres and the importance of using a high quality in-domain
seed corpus for semi-supervised training. However, this tagging per-
formance is still unsatisfactory.

Table 4 shows that both self-training and co-training signi -
cantly improve the performance of the two taggers over directly
training on CTB plus the seed corpus, with co-training strongly out-
performing self-training, even for naive co-training. Note for self-
training and co-training carried out in these experiments, we used
cache size as 10K sentences. Among the four example selection
approaches, the agreement-based approach yields the best accuracy
from resulting taggers. Between agreement-based co-training and
naive co-training, consistent with the ndings from Clark et al. [1],
agreement-based co-training is superior to naive co-training, since
at each iteration this approach dynamically selects the examples that
can improve the agreement rate and rejects ones that cannot ful ll
the goal. In contrast, naive co-training adds all new examples in
the cache which might accumulate noise during learning. On the
other hand, the number of iterations of retraining that the agreement-
based approach requires is generally an order of magnitude larger
than that of naive co-training. Interestingly, the max-t-min-s ap-
proach proposed in this work produces comparable performance to
the agreement-based method. Considering this approach is much
more computationally ef cient than the agreement-based approach,
it might be promising to explore in other co-training tasks. Also,
Table 4 demonstrates that max-t-min-s approach outperforms max-
score. This shows that although max-t-min-s might let in many ex-
amples with errorful labels, the training utility of these examples for
the student outweights the cost of errors introduced by these exam-
ples into the training data pool of the student. This observation of
importance of training utility is consistent with the nding in active
learning.

By applying co-training, we have achieved 5% to 7% relative
improvement and 4.5% to 6% absolute improvement on POS tag-
ging accuracy onMandarin BN data by employing a quite small seed
corpus of labeled data and a large amount of unlabeled data. Co-
training also reduces the discrepancy between the two taggers and
the best resulting POS tagging accuracy on the Mandarin BN POS
evaluation test set is 94.1%, comparable to the 94.3% POS tagging
accuracy we achieved on the newswire based CTB corpus using the
HMM tagger4. We also found that we never obtained performance
degradation from co-training, regardless of the number of iterations
conducted. This observation is also consistent with the ndings from
Clark et al. [1] on the English newswire domain.

In conclusion, we have shown that co-training can be effectively
applied to bootstrap POS taggers for tagging transcribed speech by
combining labeled and unlabeled data. The agreement-based exam-
ple selection approach outperforms naive co-training while a more
computationally ef cient approach proposed in this paper, which in-
corporates the idea of maximizing training utility from sample sec-

4We achieved 94.8% POS tagging accuracy when applying co-training
for the two taggers on CTB.

tion, performs comparably to the agreement-based method. In future
work, we will carry out further investigations on example selection
approaches, relations between the size of the manually labeled seed
corpus and performance of different co-training setups, and effective
combination of co-training and active learning. We will also apply
co-training for POS tagging (and parsing) on more dif cult genres
like spontaneous speech.

Table 3. Comparison of the tagging accuracy (%) of the HMM tag-
ger and ME tagger when trained on the entire CTB corpus and the
additional Mandarin BN seed corpus and tested on the Mandarin BN
POS-eval test set. Known word, unknown word, and overall accura-
cies are included.

Tagger Known Unknown Overall
HMM CTB 80.0 69.2 79.0

CTB+seed 90.5 75.1 89.6
ME CTB 79.2 66.8 78.5

CTB+seed 89.2 74.0 88.1

Table 4. Overall POS tagging accuracy (%) on the Mandarin BN
POS-eval test set after applying self-training and co-training.

Training Condition Tagger
HMM ME

Initial (i.e., CTB+seed) 89.6 88.1
self-training 90.8 90.2
co-training naive 91.9 91.8

agreement-based 94.1 94.1
max-score 93.2 93.1
max-t-min-s 94.1 93.9
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