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ABSTRACT

This paper presents an ef cient tightly integrated approach for im-
proved speech translation performance. The proposed approach com-
bines the automatic speech recognition (ASR) and statistical ma-
chine translation (SMT) components in a bi-directional fashion. First,
our SMT decoder takes the speech recognition lattice to perform an
integrated search for the optimal translation by combining various
ASR scores and translation models. Our approach is implemented
within the recently proposed Folsom SMT framework that employs
a multilayer search algorithm to conduct ef cient operations on mul-
tiple graphs, which not only achieves memory ef ciency and fast
speed that is critical for real time speech translation applications, but
also provides signi cant accuracy improvements. Secondly, we also
report our experiments where the ASR is customized by reinforcing
the language model to favor downstream translation component. We
evaluated our approach on a large vocabulary speech translation task,
and we obtain more than 2 point BLEU improvement over standard
cascaded 1-best speech translation.

Index Terms— Integrated speech translation, coupling, speech
recognition, machine translation, ef cient search

1. INTRODUCTION

Automatic translation of spoken audio streams from one language
into another has been one of most attractive elds in recent years.
To accomplish such a task, the system is typically comprised of in-
dividual engines for automatic speech recognition (ASR) and ma-
chine translation (MT), as well as other downstream components
(e.g., speech synthesis or information extraction etc) depending on
the requirements of target application.

There are several ways to combine ASR and MT components
in a spoken language translation system, and the architectures for
such systems can either be cascaded or integrated. In cascaded ap-
proaches, the SMT has been conducted on the single best ASR out-
put, i.e., SMT is carried out with the assumption of that the ASR
output is perfect. Given the fact that the single best ASR output
can not always be correct, and more appropriate recognition results
are often embedded in competing hypotheses produced by the rec-
ognizer, it is natural to enhance the interface between ASR and MT
by extending the single best hypothesis to multiple recognition op-
tions. There have been a number of previous studies [1, 2, 3, 4] in
this thread that employs either N-best list or recognition lattice to in-
corporate more information into a translation system. In contrast to
the cascaded approach, we refer to the latter as integrated approach.

Ideally for the speech translation tasks, the choice of the best
ASR should not be only determined locally by the recognizer, but
also by the MT engine to jointly select a globally optimal one that
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maximizes the translation quality in the target language. There-
fore, it is expected that the speech translation accuracy should be
improved by such integration efforts.

However, there are a number of issues to be addressed for this
integration approach. First, the search space of the integrated trans-
lation decoding has been dramatically increased by several orders of
magnitude compared to the single best or text-based translation, and
thus, more ef cient decoding algorithms are required to handle the
space issue, which is particularly important for any real-time interac-
tive applications such as speech-to-speech translation. Secondly, the
relative improvements presented in some of previous studies have
been shown to be limited or inconsistent, which does not justify
the signi cant additional computational expenses (CPU time and
memory usage) associated with the integration approach. Thirdly,
previous studies have been mostly focused on how to incorporate
ASR information into MT, and there are few studies related to how
MT might be able to help ASR. Finally, while some researchers,
such as Matusov et al. [3], have reported consistent improvements
on small to medium translation tasks, to our best knowledge, there
have been no reported consistent improvements on large vocabulary
speech translation tasks. It is our intention to show in this paper that
the integration approach should also work for large vocabulary tasks
with reasonable speed for real time applications.

In this study, we describe our approach that addresses above
issues. Our approach is based on our previous proposed Folsom
SMT translation framework [5] that employs a multilayer search al-
gorithm. Within this framework, the integrated lattice translation
can be achieved by extending the layer of input, which achieves not
only memory ef ciency, but also provide signi cant accuracy im-
provements compared to the 1-best translation. Furthermore, our
proposed approach attempts to combine ASR and SMT components
in a bi-directional fashion. To that end, we report our experiments
that the ASR is customized by reinforcing the language model to fa-
vor downstream translation component. We evaluated our approach
on a large vocabulary speech translation task from Iraqi Arabic to
English, and we obtain more than 2 point BLEU improvement over
standard cascaded 1-best speech translation. Moreover, our imple-
mentation within Folsom framework achieves a fast lattice transla-
tion speed that is critical to any real-time applications.

The remainder of this paper is organized as follows: Sec. 2
presents an overview of our baseline SMT system for speech transla-
tion; Sec. 3 describes details of our new coupling approach and im-
plementation; Sec. 4 presents experimental results for speech trans-
lation tasks; and nally, Sec. 5 summarizes our contributions.

2. FOLSOM: AN EFFICIENT PHRASE-BASED SMT
FRAMEWORK

Our recently proposed Folsom system [5] is a novel framework for
phrase-based SMT that is speci cally designed to achieve ef ciency
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and fast translation speed, yet to maintain state-of-the-art translation
accuracy. We provide a brief overview of the Folsom framework
in this section, and details have been presented in [5]. The Folsom
framework has additional advantages for speech translation tasks,
as it provides a convenient combination of speech recognition and
machine translation, which will be shown in Sec. 3.

Phrase-based translation models explicitly take word contexts
into consideration when making a translation decision. The foreign
word sequence fJ1 is segmented into phrase sequence f̄K1 , where
1 ≤ K ≤ J . We express the translation model as a chain of con-
ditional probabilities, which can be represented by nite-state ma-
chines (FSM’s) that model the relationships between inputs and out-
puts [5]. Therefore, the translation task can be framed as nding the
best path in the following FSM:

S = I ◦ P ◦ T ◦ W ◦ L (1)

where I denotes the source word sequence expressed as a linear
nite-state automaton, the transducers P , T , W , and L correspond

to source language segmentation transducer, phrase translation trans-
ducer, target language phrase-to-word transducer, and target lan-
guage model, respectively.

For extracting bilingual phrase pairs and estimating their trans-
lation probabilities, we follow the procedure described in [6]. The
bilingual phrase pair inventory, denoted as BP , is extracted from the
union of bidirectional word-level alignments. The phrase translation
probabilities are estimated via maximum likelihood estimation using
the counts derived from BP .

2.1. Transducers for Component Models

Source Language Segmentation transducer P: It explores all “ac-
ceptable” phrase sequences for any given source sentence. We as-
sume a uniform distribution over all acceptable segmentations. Within
the FSM framework, the segmentation procedure is implemented as
a transducer P that maps from word sequences to phrases. In gen-
eral, this transducer is not determinizable due to the overlap between
phrases [7, 5]. In our work, we introduce an auxiliary symbol, de-
noted EOP, marking the end of each distinct source phrase. Once
we have determinized the transducer, we can replace the EOP mark-
ers with empty strings in a later step as appropriate. As we assume a
uniform distribution over segmentations, we simply set the cost (or
negative log probability) associated with each arc to be zero.

Phrase translation transducer T : The phrase translation model
is implemented by a weighted transducer that maps source phrases
to target phrases. In order to be consistent with the other transducer’s
in Eq. (1), one more arc is added in this transducer to map EOP to
itself with no cost.

Target language phrase-to-word transducer W: To incorporate
target language model during translation, the target phrases must be
converted back to target words. It is clear that the mapping from
phrases to word sequences is deterministic. Therefore, the imple-
mentation of this transducer is straightforward. Again, we need to
place the auxiliary token EOP on additional arcs to mark the ends
of phrases.

Target language model L: represented by a weighted acceptor
that assigns probabilities to target language word sequences based
on a back-off N-gram language model [7].

2.2. The Multilayer Search Algorithm

The translation problem can be framed as nding the best path in
the lattice S for a given input automaton I, as shown in Eq. 1.
Viterbi search can therefore be applied to S to nd its lowest-cost

path. To minimize the amount of computation required at translation
time, it is desirable to perform as many composition operations in
Eq. (1) as possible ahead of time. The ideal situation is to compute
H = P ◦ T ◦W ◦ L of ine.

However, it can be very dif cult to construct H given practi-
cal memory constraints for large translation tasks. In particular, the
nondeterministic nature of the phrase translation transducer inter-
acts poorly with the language model. Furthermore, even when one
is able to compute and storeH, the composition I ◦H itself may be
quite expensive. To improve speed, it has been proposed that lazy or
on-the- y composition be applied, followed by Viterbi search with
beam pruning. Nevertheless, for largeH, using such operations from
general FSM toolkits can still be quite slow and memory inef cient.

While it may not be feasible to compute H in its entirety as a
single FSM, it is possible to separateH into two pieces: the language
model L and the translation modelM, which we call a SIPL:

M = Min(Min(Det(P) ◦ T ) ◦ W) (2)

where Min denotes the minimization operation. Due to the deter-
minizability of P , M can be computed of ine using a moderate
amount of memory. We perform all operations using the tropical
semiring as is consistent with Viterbi decoding,

To address the problem of ef ciently computing I ◦M◦L, we
have developed a multilayer search algorithm for the Folsom system.
The basic idea is that we perform search in multiple FSM’s or layers
simultaneously. Speci cally, as shown in Fig. 1, we have one layer
for each of the input FSM’s: I, L, andM. At each layer, the search
process is performed via a state traversal procedure starting from the
start state s0.

In previous work, we represent each state �s in the search space
using the following 7-tuple: (sI , sM, sL, cM, cL,�h,�sp), where sI ,
sM, and sL record the current state in each input FSM; cM and cL
record the accumulated cost in L and M in the best path up to this
point ; �h records the target word sequence labeling the best path up
to this point; and �sp records the best previous state.

To support platforms without oating-point units (e.g., most hand-
held devices), search in the Folsom system is implemented using in-
tegerized arithmetic. Moreover, memory usage can signi cantly be
reduced by storing the SIPL (M) and the language model L on disk
and paging them in on demand. We store them in sorted structures
that make I/O access very ef cient. The runtime memory required
by Folsom decoder is mostly devoted to storing active search hy-
potheses, and it can be as little as 10MB.

3. INTEGRATED SPEECH TRANSLATION IN FOLSOM

3.1. Incorporating ASR Uncertainty into Translation

The design architecture of the Folsom system provides a convenient
and ef cient way to perform integrated speech translation. To handle
the recognition lattice, the source layer in the decoding graph needs
to be extended to allow for competing recognition hypotheses at any
arbitrary instance. Furthermore, the recognition probabilities of in-
dividual hypothesis need to be taken into account in the translation
search to make global decisions.

To handle recognition uncertainty, the search hypothesis �s is ex-
tended into the following 8-tuple: (sI , sM, sL, cI , cM, cL,�h,�sp);
here, the additional element cI denotes the accumulated cost in the
recognition lattice, which, in our approach, is a combination of scores
of acoustic model, language model and fast match. The timing in-
formation presented in the recognition lattice is not used in our cur-
rent integrated decoding, and thus are discarded in the upper layer
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Fig. 1. The wulti layer search for lattice translation (for simplicity, the
cost associated with each arc is not labeled).

of Fig. 1. Moreover, the recognized out-of-translation-vocabulary
entries such as llers, silence and partial words have been replaced
with ε transitions since they are irrelevant to translation model.

At initialization, only the start state �s0 is active, which corre-
sponds to being located at the start state of each input FSM with no
accumulated costs. The active states at each position t are computed
from the active states at the preceding position t-1 in the following
way: for each active state �s at position t-1, rst advance sI in recog-
nition lattice. Then, look at all outgoing arcs of sM labeled with the
current input word f , and traverse one of these arcs, advancing sM.
Then, given the output label e of this arc, look at all outgoing arcs of
sL with e as its input, and traverse one of these arcs, advancing sL.
The set of all states (sI , sM, sL, . . .) reachable in this way is the set
of active states at position t. The remaining state components cM,
cL, �h, and �sp must be updated appropriately, and ε-transitions in dif-
ferent machines must be handled correctly as well. For each active
state, the hypothesis �h is a translation of a pre x of a given path in
the input layer, and can conceivable grow to be quite large. However,
we can store the �h’s for each state ef ciently using the same ideas as
used in token passing in ASR. In particular, the set of all active �h’s
can be compactly represented using a pre x tree, and each state can
simply keep a pointer to the correct node in this tree.

The associated cost of a given active state �s is computed as:

cost(�s) = λIcL +
X

i

λic(i) (3)

where, λI is the weight parameter for scaling the impact of recog-
nition uncertainty, and the second term is the translation cost, which
is a log-linear combination of costs computed by multiple models
(for example, the translation model, language model as well as other
heuristic costs such as translation length penalties and phrase penal-
ties). All the λ’s in Eq. 3 can be determined by maximizing some
objective score with respect to a dev set using Powells algorithm
combined with a line search method [8].

To reduce the search space, active search states are merged when-
ever they have identical sI , sM, and sL values; the remaining state
components are inherited from the state with lower cost. In addi-
tion, two pruning methods, histogram and beam pruning, are used to
achieve the desired balance between translation accuracy and speed.
The set of legal translation candidates are those �h associated with
states �s where each component substate is a nal state in its layer.

Table 1. A comparison of ASR performance (WER %).
Baseline Customized

Data 436K 145K 436K 145K
Dev(1-best) 43.1 48.2 38.7 47.9
Dev(Oracle) 24.2 27.3 22.6 27.3

Test(1-best) 27.5 29.4 25.7 27.7
Test(Oracle) 12.6 15.0 12.7 15.4

The selected candidate is the legal candidate with the lowest accu-
mulated cost.

Our decoder can be viewed as an optimized version of dynamic
composition combined with lazy determinization and minimization
[7], as well as Viterbi search. However, our algorithm has the ad-
vantage of not only being possibly much faster and more memory
ef cient than general composition implementations found in FSM
toolkits, but it can also incorporate information sources that cannot
be easily or compactly represented using FSM’s.

3.2. Customizing ASR for MT

Our baseline ASR system for Iraqi Arabic is more precisely de-
scribed in [9]. We used the same discriminatively trained acoustic
models for all the experiments described in this paper. The acous-
tic model for dialectal Arabic uses graphemes as the basic acoustic-
phonetic units. There are 33 graphemes representing speech and
silence. Each phone is modeled with a 3-state left-to-right HMM.
The acoustic models are built using 40 dimensional features. The
context-dependent model has over 2K leaves and 60K Gaussians.

Towards a more tightly integrated speech translation approach,
we propose to further customize the ASR module in the favor of
MT. As an initial attempt, we intend to reinforce the source lan-
guage model (SLM) using knowledge presented in the translation
model. The general idea is that, other things being equal, the recog-
nizer should favor recognition hypotheses that the MT engine has the
highest con dence to translate, in order to achieve a higher source
speech to target text translation performance. One way to approx-
imate this idea is to bias the SLM based on translation model, and
more speci cally, the phrase-level translation table employed in our
phrase-based SMT system.

Practically, for each entry of the phrase translation table, we ob-
tain the foreign part to train a new SLM, and we assign different
weights to each foreign phrase, according to the phrasal translation
probability. In such a way, the probability of some rare source word
sequences that yet have less ambiguous translations will be boosted
in this new SLM. It is not surprising to us that this new SLM alone
degrades the ASR performance due to its bias, compared to our base-
line SLM, as shown in our preliminary experiments. Our nal cus-
tomized LM used in the experiments reported here is actually an in-
terpolation (both weights xed a priori to 0.5) between the baseline
SLM and this biased SLM. All our language model uses standard
3-gram.

4. EXPERIMENTAL EVALUATION

4.1. Experimental Setup

We evaluate our integrated Folsom speech translation system on a
real-time speech translation task translating Iraqi Arabic into En-
glish. The SMT training data has a total of 436k parallel sentences,
which correspond to about 2.1M running words on the Arabic part
and about 3M on the English part. The vocabulary size is above

IV  103



Table 2. Speech translation (BLEU %) on smaller (145k) training data.
Data Input Baseline ASR Customized ASR

Dev
1-best 32.73 34.56

Integrated 34.95 35.63
Correct 50.36

Test
1-best 34.63 35.03

Integrated 35.65 36.43
Correct 41.20

Table 3. Speech translation (BLEU %) on bigger (436k) training data.
Data Input Baseline ASR Customized ASR

Dev
1-best 39.80 39.63

Integrated 42.62 47.02
Correct 62.96

Test
1-best 36.15 36.22

Integrated 38.30 37.36
Correct 44.74

75K for Arabic and above 25K for English. To evaluate the effec-
tiveness of our method on various sizes of training data, we also
downsampled the data set to obtain a smaller amount of training data
with 145k parallel sentences (i.e., 1/3 of the original size). The dev
and test data are extracted from different test scenarios in Iraqi Ara-
bic: the dev set is made up of 510 speech utterances coming from
5 speakers; the test set is made up of 554 spoken utterances from 4
speakers, which is in total more than 1 hour in length. For translation
evaluation, the dev set provides 4 references while the test set has 1
reference.

The acoustic training data consists of about 200 hours of dialec-
tal Iraqi Arabic collected in the context of the TRANSTAC speech
to speech translation project. All the baseline language models used
in the experiments reported here use a training corpus which is the
Iraqi part of the corresponding parallel data set described above. The
maximum phrase length was set to 5 in all our experiments. For the
bigger training set, we obtained about 2.2M phrase pairs from the
training data. The resulting SIPL has about 4.3M states and 6.5M
arcs. For the smaller one, the obtained phrase pairs are reduced to
740K. The English language model in the translation system is xed
in all the experiments, which is a back-off 3-gram trained from 4M
monolingual words. All decoding experiments were conducted on a
Linux machine with a 2.4 GHz Pentium 4 processor and 512 MB of
memory, withM and L loaded entirely into memory.

4.2. Experimental Results

We rst report our ASR results (1-best WER and lattice oracle WER)
in Table 1. The differences observed between 1-best and oracle WER
indicate the potential bene ts we might have in using lattices inputs
to the translation module. We note that the 1-best recognition ac-
curacy improves signi cantly over the baseline for all scenarios by
using our customized language model, while the improvements for
oracle WER is less signi cant. The big improvement of 1-best accu-
racy is rather unexpected, which might be due to a better smoothing
of the customized LM resulting from the interpolation, as described
in Sec. 3.2.

Speech translation results are presented in Table 2 and Table 3 in
terms of the BLEU metric [10] respectively for two setups. The dev
sets are employed to adjust the model weights in Eq. 3 to optimize
the BLEU scores for different inputs (i.e., correct transcript, 1-best
ASR output and ASR lattice). These weights are consequently ap-

plied to the test set with corresponding inputs.
From both Table 2 and Table 3, we observe consistent improve-

ment of the integrated decoding compared to 1-best on both dev and
test set for all scenarios. The BLEU improvement is signi cant (
ranging from 1 to more than 2 points for most cases, and up to 6
points on dev set in Table 3) for all scenarios. This clearly shows
that our integrated decoding signi cantly enhances large vocabulary
speech translation task. Table 2 also shows that our customized ASR
advances translation performance for all scenarios. Combining with
integrated decoding, we achieve 3 points BLEU improvement on dev
set and 2 points on test set. However, the bene t of customized ASR
is less clear on the bigger training set.

Moreover, we measured translation speeds for our integrated
speech translation system. For all lattice decoding experiments, the
Folsom system is able to nish the entire test set (approximately 50
mins in length) of 554 lattice in 45 seconds. In other words, our sys-
tem speed should be more than satisfactory for our real time speech
translation tasks.

5. SUMMARY

We presented an ef cient and more tightly integrated speech trans-
lation system within the Folsom SMT framework. Our approach
combines ASR and SMT in in a bi-directional fashion by using a
recognition lattice and a customized ASR for MT. We evaluated our
system on a large vocabulary task and observed consistent improve-
ments over cascaded baseline system. Furthermore, our implemen-
tation within the Folsom SMT framework provides fast decoding
speed that is critical for real time speech translation.
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