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ABSTRACT

We propose a novel, divergence-based similarity measure for

spoken document retrieval (SDR). We derive a dynamic pro-

gramming algorithm that measures Kullback-Leibler diver-

gence between two HMMs first. The measure is further gen-

eralized to a graph matching algorithm, which is efficient for

SDR application. The proposed approach compares the un-

derlying acoustic models of keywords and a target database to

alleviate the impact of mismatched vocabulary and language

model, e.g. different domains. Experimental results on the

Wall Street Journal (WSJ) database show that the proposed

approach achieves a comparable performance, compared with

the word posterior based approach. It outperforms the latter

when there is a mismatch in language model. The approach is

promising for building an open-vocabulary, domain indepen-

dent SDR application.

Index Terms— Spoken document retrieval, Hidden Markov

models, Kullback-Leibler divergence, Dynamic programming

1. INTRODUCTION

Spoken document retrieval (SDR) [1] is an important applica-

tion of speech technologies, which made significant progress

during the past several years. Conventionally in SDR, the

document is first transcribed to a word graph, and then search-

ing the keyword in it. The approach faces several challenges

in practice. First, it can not deal with out-of-vocabulary (OOV)

words. Second, resolution at word level is somewhat low

since some of the words are quite similar at acoustic level.

Third, it is cumbersome to deal with compound keywords.

Hence, sub-word units based approaches are widely adopted

for open-vocabulary SDR [2].

Actually, the limitation of word level SDR arise form the

inadequate manner of comparison. Label comparison is some-

what inconsistent with our goal: we are finding acoustically

similar pairs. Note that in speech modeling, acoustic behavior

of any text, including keywords and spoken documents, can

be effectively described by hidden Markov models (HMMs).

Hence, HMM dissimilarity can be adopted as the acoustic dis-

tortion measure between the keyword and document, which

intuitively leads to a novel approach to SDR. Actually, HMM

KLD is more general and effective in measuring acoustic dis-

tortion [3] compared with phone edit distance or other heuris-

tic measures. The approach is expected to have the following

advantages: First, it is more immune to OOV words, com-

pound words and language model mismatch; Second, it pro-

vide us more freedom in transcribing the spoken document at

any speech unit level. Third, it leads to compact index for

spoken document; Finally, it can be applied to other speech

based applications, e.g., voice search [4].

To calculate HMM similarity at high resolution, we de-

rive an algorithm to measure the Kullback-Leibler divergence

(KLD) between two HMMs. As a result, the problem of

acoustic simmilarity is converted to a text matching problem

with model based costs. The algorithm is then generalized to

an graph based algorithm for SDR, which search an HMM

state graph, which represents the input keyword, in another

state graph which represents the spoken document.

Experimental results on Wall Street Journal (WSJ) show

that the new approach works as well as word posterior based

approach with more compact indices, and outperforms the lat-

ter as the language model mismatch gets more serious. There-

fore, the new approach is expected to be promising in building

an open-vocabulary, domain independent SDR system.

2. KULLBACK-LEIBLER DIVERGENCE
BETWEEN TWO LEFT-TO-RIGHT HMMS

Conventionally, left-to-right HMMs are adopted to character-

ize the acoustic behavior of speech units. In this section, we

derive an algorithm to assess KLD between two left-to-right

HMMs, which lays a basis for similarity based SDR.

We denote {π,A,B} the parameter set of a HMM H,

where π is the initial state distribution, A is transition ma-

trix, and B is the set of output distributions. In left-to-right

HMMs, π and A hold the following forms:

π =

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ A =

⎛
⎜⎜⎜⎝

a11 a12 . . . 0
0 a22 . . . 0
...

...
. . . aJ−1,J

0 0 . . . 1

⎞
⎟⎟⎟⎠ (1)

where J is the total number of states and at the dummy end is
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the terminal state of the HMM. Usually, an output distribution

b in B is characterized by a Gaussian mixture model (GMM).

Given two HMMs, their KLD is defined as:

D(H‖H̃)=
∫

P (o1:t|H) log
P (o1:t|H)
P (o1:t|H̃)

do1:t

where o1:t is the observation sequence runs from time 1 to t.
In [5], Do presented an upperbound of KLD rate instead of

KLD between two HMMs, which only considers the steady

states of HMMs. However, for two HMMs of speech units: 1)

Given two left-to-right HMMs, the KLD rate becomes KLD

between the two dummy end states rather than the dissimilar-

ity between the two evolving processes. 2) Algorithm in [5]

does not deal with two HMMs of different numbers of states.

We address these problems in this section.

2.1. Synchronous state matching for equal-length HMMs

We focus on KLD instead of KLD rate. By applying back-

ward algorithm proposed in [5], we obtain the following up-

perbound of KLD:

D(H‖H̃)≤D(π‖ π̃)+π� lim
τ→∞(

τ∑
t=1

At−1d−Aτ−1e) (2)

where di =D(bi‖̃bi)+D(ai‖ãi) , denoting ai the ith row of A
and d=(d1, . . . , dJ)�; e = [D(a1 ‖ ã1), . . . , D(aJ ‖ ãJ)]�.

The physical meaning of (5) can be clarified as follows:

1) D(π ‖ π̃) is KLD between the initial state distributions;

2)π�At−1 is the state distribution after t − 1 transitions, so

L�=π� limn→∞
∑τ

t=1 At−1 is the sum of the state distri-

butions over the entire time axis. 3) di is the KLD between

the two evolution HMM processes for one frame to the next

given the current state i. Therefore, denoting li the ith element

of L, lidi represents the overall contribution of the ith state to

the total KLD.

In left-to-right HMMs, it is reasonable to assign a zero

value to the KLD between two dummy end states. By substi-

tuting the parameters in (1) into (2), we obtain an approxima-

tion of the symmetric KLD:

DS(H ‖ H̃) ≤
J−1∑
i=1

Δi,i (3)

where Δi,j represents the symmetric KLD between the ith

state in H and the jth state in H̃:

Δi,j=[D(bi ‖ b̃j)+log
aii

ãjj
]li+[D(b̃j ‖bi)+log

ãjj

aii
]l̃i (4)

where li = (1 − aii)
−1

is the expected duration of the ith

state in H.

The result suggests a synchronous matching for KLD be-

tween two equal-length HMMs: Calculate paired KLDs state

by state, and sum them up. For KLD between two GMMs

D(bi ‖ b̃j), we use unscented tranform to approximate it [3].

2.2. Dynamic programming for unequal-length HMMs

To handle HMMs with unequal lengths, we first consider the

following case: comparing a 2-state and a 1-state HMM, here

we disregard the dummy end states. Also by the backward

algorithm [5], we can obtain the following upperbound:

DS(H ‖ H̃) ≤ Δ1,1 + Δ2,1 + φ(ã11, a11, a22) (5)

where φ(ã11, a11, a22) = 1−ã11
1−a11

+ 1−ã11
1−a22

= l1/l̃1 + l2/l̃1.

(8) suggests calculating the KLD as follows: Duplicate

the state in the second HMM with an additive penalty of φ,

and then apply synchronous state matching. Intuitively, state

duplication can be adopted as a basic operation to make the

HMMs to be more flexible, based on this we then come up

with an effective DP algorithm.

We treat the problem of computing KLD between two

HMMs as a generalized string matching process [7], where

states and HMMs are the corresponding counterparts of char-

acters and strings, respectively. In string matching, errors of

insertion, deletion and substitution are considered [7]. We re-

define the errors based on (6) and (8):

1) Substitution: δS(i, j) = Δi,j

2) Insertion: During DP, if the ith state in H is treated

as an insertion, we can copy the jth state forward as a com-

petitor in H̃, then the insertion distance is: δI(i, j) = Δi,j +
φ(ãjj , ai−1,i−1, aii)

3) Deletion: A deletion in H can be treated as an inser-

tion in H̃. Hence, the distance is symmetric to that in state

insertion: δD(i, j) = Δi,j + φ(aii, ãj−1,j−1, ãjj)
To deal with the boundary issues in DP, we further define

that δI(0, j) = Δ1,j and δD(i, 0) = Δi,1.

Now we can obtain the KLD by DP. The matching pro-

cess can be decomposed into a series of operations belonging

to {Substitution(S), Insertion (I), Deletion (D)}. We use a

J × J̃ matrix C to save information, where cij is the mini-

mal distance of a partial path when the two HMMs are at the

corresponding ith and jth states. The dynamic programming

process can be written as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c00 = 0
ci0 = ci−1,0 + δD(i, 0), (0 < i < J)
c0j = c0,j−1 + δI(0, j), (0 < j < J̃)
cij = min{ci−1,j + δD(i, j), ci,j−1 + δI(i, j),

ci−1,j−1 + δS(i, j)}, (0 < i < J, 0 < j < J̃)
(6)

Finally, we conclude with a KLD approximation:

DS(H ‖ H̃) ≈ cJ−1,J̃−1 (7)

An example to illustrate the matching result between the

syllables “sting” and “string” is shown in Fig. 1.
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Fig. 1. Demonstration of DP algorithm for HMM KLD

3. SIMILARITY BASED SDR ON GRAPHS

Acoustic similarity measure between two HMMs can be in-

tuitively applied to SDR. Considering searching a keyword in

a spoken document, we can represent the input keyword as

an HMM state graph. (Because there can be more than one

pronunciation for a word, single path is not adequate here.)

On the other hand, each piece of the spoken document can

also be transcribed into a state graph. By adopting the match-

ing cost given by HMM divergence, the problem of SDR is

converted into a text retrieval problem. In this section, we

first discuss on issues in generating the graphs and necessary

pre-processing, then introduce our retrieval algorithm.

3.1. Graph generation and pre-processing

To faciliate description of the algorithm, we first introduce

the representations here. In SDR, the state graphs can be

represented as directed acyclic graphs (DAGs) G = (V, E)
with node set V and edge set E . For each e ∈ E , we denote

Se, Ee ∈ V as its start node and end node, respectively, and

se, le the state and log likelihood of the edge. For each v ∈ V ,

we denote its in node set as:

Iv = {u|u ∈ V;∃e ∈ E , Se = u,Ee = v} (8)

Given a node u and a node v ∈ Iu, we denote v → u the link

edge from v to u. Here we assume that there is only one edge

between two adjacent nodes.

We assume that state graphs have a unique node
⊙ ∈ V

that doesn’t have any in-nodes and a unique node
⊗ ∈ V that

doesn’t have any out-nodes. They are denoted as the source
and sink of the word graph, respectively.

We can transcribe each piece in spoken document into a

word graph using automatic speech recognition (ASR), and

then convert it to an HMM state graph. The graph is named

as target graph and represented as GT = {VT, ET}. Given

a keyword, we just collect all its pronunciations and merge

them into a state graph. Because more compact graph leads

to better efficiency, we adopt the algorithm proposed in [6] to

build a compact non-deterministic state graph. The graph is

named as pattern graph and represented as GP = {VP, EP}.

A major difference between text matching and retrieval is

that in the latter, we can start from or end at any feasible node

in the target [7]. In our case, all the nodes at word boundaries

are such feasible nodes. The set is represented as BT.

When matching two DAGs, we should do topology sort-

ing first. A sorted node set can be represented as a sequence

of V = {⊙ = v1, v2, ..., v|V| =
⊗}.

3.2. Graph similarity based retrieval

Given two topology sorted DAGs, we conduct DP by visiting

the nodes in order as in text matching. The only difference

here is that now we should deal with multiple in-edges at each

node. To clarify the concepts, we only consider the case that

there is only one path in GT. In other words, we only reserve

the best hypothesis for each spoken document piece. In such

case, for each t ∈ VT − {⊙}, there is only one t′ ∈ It.

Hence, we can use t′ to represent the predecessor of t.
Based upon the matching costs derived in section 2.2, we

can generalize (5) to the following SDR algorithm based on

HMM similarity. Given a node sorted pattern graph GP =
{VP, EP} and a node sorted target graph GT = {VT, ET}, the

algorithm can be conceptually represented as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cp,
J = p ∈ {⊙}?0 : ∞ (p ∈ VP)

cJ
,t = t ∈ BT?0 : ∞ (t ∈ VT)

fp′→p,
J = ∞ (p ∈ VP − {⊙}, p′ ∈ Ip)

fp′→p,t = min[cp′,t′ +δS(sp′→p, st′→t),
fp′→p,t′ +δI(sp′→p, st′→t), cp,t′ +δD(sp′→p, st′→t)],

cp,t = maxp′ fp′→p,t

(p ∈ VP − {⊙}, t ∈ VT − {⊙}, p′ ∈ Ip)
(9)

It is notable that during the procedure, we should visit the

nodes in the two graphs in order. Beside c, which keeps it

meaning as in (5), we further introduce f to keep the succes-

sion of states when matching two graphs. fp′→p,t represents

the minimal distance of a partial path when the pattern graph

reaches node p from p′ and the target graph reaches node t.
After the matching process, we can find the word bound-

ary nodes given a threshold η:

F = {t|t ∈ BT, cN
,t < lPη} (10)

where lP is the average length of pattern graph. F are end

nodes of the matching pieces in the target, by back-tracing,

we can obtain the corresponding start nodes.

4. EXPERIMENTS

We conducted experiments on the database of APRA Wall

Street Journal [8]. The acoustic models are trained on the

training sets of SI-284 using 39-dimensional MFCC features.

Each context dependent phone is modeled by a 3-state HMM.

Totally, there are 4,868 tied states with 12 Gaussians per state.

For test, we select 200 words in training vocabulary and 20

OOV words as the keywords, and retrieve them in the testing
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Fig. 2. Word posterior based SDR

set of Nov’92. Correspondingly, 4.8% of the relevant word

occurrences are OOVs.

Word posterior [9] based approach is adopted as the base-

line in our experiments. In this approach, the posterior of a

keyword in the word graph was used as the measure for word

spotting. In HMM similarity based SDR, only the top can-

didate is used to built the target graph, which leads to more

compact index and more efficient decoding. To test the depen-

dency on language models, we used language models range

from tri-gram, bi-gram, uni-gram to zero-gram (free word

loop) in decoding. Two measures: precision (# relevant words

retrieved / # words retrieved) and recall (# relevant words re-

trieved / # relevant words) are adopted for evaluation.

The operating curves are shown in Fig. 3 and Fig. 4. It

is observed that the two approaches achieves comparable per-

formances given a perfect language model. However, when

the language model get weaker, which is to simulate domain

mismatch, HMM similarity based approach performs signif-

icantly better. Another observation is that even word level

transcription, HMM similarity based approach can still re-

trieve 50.5% of OOVs (tri-gram, precision = recall). Hence, it

is expectable that with sub-word transcription, we have more

chances to recover OOVs by HMM similarity based approach.

5. CONCLUSIONS

In this paper, we propose a novel, divergence based measure

for SDR. A general graph matching algorithm is used for ef-

ficient retrieval. Because the approach compares the under-

lying acoustic models directly, the impact of mismatched vo-

cabulary and language models on retrieval performance can

be reduced. The approach is promising for building an open-

vocabulary, domain independent SDR system.

40 50 60 70 80 90 100
40

50

60

70

80

90

100

← tri gram
← bi gram

uni gram

zero gram

Precision(%)

R
ec

al
l(%

)

Fig. 3. HMM similarity based SDR
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