
TWO-STAGE METHOD FOR SPECIFIC AUDIO RETRIEVAL

Wei-Qiang Zhang, Jia Liu

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
weiq.zhang@gmail.com, liuj@tsinghua.edu.cn

ABSTRACT

Specific audio retrieval, also referred as similarity-based au-
dio retrieval, means to detect and locate a given query audio
segment in a long stored audio signal. In this paper, we pro-
posed a two-stage method for specific audio retrieval. In the
first stage, the histogram pruning algorithm is used for coarse
detection. In the second stage, the partial distance technique
is used for fine verification and localization. Experimental re-
sults show that the two-stage coarse-to-fine method offers fast
search speed and improves the robustness to additive noise
and compression encoding.

Index Terms— Audio retrieval, histogram pruning, two-
stage method

1. INTRODUCTION

With the rapid development of multimedia technologies, peo-
ple now can share more types of media for entertainment, ed-
ucation, business or other purposes. Meanwhile, there are in-
creasing interests in how to organize and retrieve the non text-
based data [1]. This brings forth the multimedia retrieval.

In the field of multimedia retrieval, audio retrieval is al-
ways one of the most attractive but difficult problems [2].
Audio retrieval can be categorized into the content-based re-
trieval and similarity-based retrieval (also referred as specific
audio retrieval). The former usually employs high-level infor-
mation and includes audio indexing, keyword spotting, mu-
sic retrieval and so on [3]. The latter deals with detecting a
known query signal in a long stored signal (or stream) [4].

Specific audio retrieval, perhaps does not have so many
applications as content-based audio retrieval. But for some
special applications, such as advertisement monitoring, copy-
right management, etc., it can provide an efficient and effec-
tive solution. In addition, as a basic technology [5], specific
audio retrieval may clue approaches for handling other multi-
media information.

So far, the most widely used method for specific audio
retrieval may be the histogram pruning algorithm [4–6]. It is
an efficient algorithm, but it does not reflect the time order of

This project is partly supported by the National Natural Science Foun-
dation of China (No. 60572083).

feature vectors. Although sub-window method is introduced
[5], this problem is only partly solved.

In this paper, we propose a two-stage method for specific
audio retrieval, which can make full use of time order infor-
mation. The rest of this paper is organized as follows. In sec-
tion 2, we introduce the histogram pruning algorithm, which
is used as the first stage in our method for coarse detection.
Section 3 addresses our considerations on feature extraction.
In section 4, we give the framework of the two-stage method
and implementation the second stage. Detailed experiments
and performance comparison are presented in section 5. Fi-
nally, section 6 gives conclusions.

2. OVERVIEW OF THE HISTOGRAM PRUNING
ALGORITHM

A straightforward method for similarity-based search is em-
ploying the correlation coefficients between the query signal
and the stored signal. This method, however, is a brute force
search method and has two obvious disadvantages: time-
consuming and sensitive to some audio coding. In fact, the
correlation work can be done in the feature domain, i.e.,
match the similarity between the features of the query sig-
nal and the stored signal. But it still costs considerable time
especially for long-running stored signals.

In order to solve this problem, Kashino et al. proposed
a histogram pruning algorithm [4, 5], whose block diagram
is shown in Fig. 1. The key accelerating technique is an
effective pruning by using feature histograms. Suppose the
feature histograms of the query signal and the stored signal
segment (which has equal length with the query signal) are
hQ = (hQ

1 , hQ
2 , · · · , hQ

B) and hS = (hS
1 , hS

2 , · · · , hS
B), re-

spectively, where B is the number of histogram bins and hi is
the frequency counts in i-th bin. The similarity between hQ

and hS can be defined as

S(hQ,hS) =
B∑

i=1

min(hQ
i , hS

i). (1)

If we have known the similarity between the query signal
and the stored signal segment located at l1 (which is the frame
index), the upper bound of the similarity at l2 can be predicted
as

IV 851424407281/07/$20.00 ©2007 IEEE ICASSP 2007

similarity S

features of the stored signal time

histograms

skip width w

features of the query signal

decision

...

result

hS

hQ

threshold ST

Fig. 1. Block diagram of the histogram pruning algorithm.

Su(hQ,hS(l2)) = S(hQ,hS(l1)) + (l2 − l1). (2)

According this upper bound and the detection threshold ST ,
we can skip w frames from location l1 without losing any
precision.

w =
{

ST − S(hQ,hS(l1)) + 1, if S(hQ,hS(l1)) < ST ,
1, otherwise.

(3)
Using the skip width, the matching calculations can reduced
by hundreds of times [5].

For one-dimensional features, we can easily count the
number of occurrences of each feature to obtain the feature
histogram. For higher-dimensional features, we can first map
them to scalar codes by using vector quantization (VQ) algo-
rithm [7], and then count the number of occurrences of each
quantized code.

3. FEATURE EXTRACTION

In the audio retrieval field, various types of features have been
proposed, such as the zero-crossing rate (ZCR) [4], normal-
ized short-time power spectrum [5], normalized delta short-
time power spectrum [8], dominant features obtained via
eigen-decomposition [9], multiple feature vectors including
ZCR, spectral centroid, spectral roll-off, and spectral flux [6].

For the specific audio retrieval task, the features should
not only provide sufficient discriminative information, but
also have low computational complexity. In this paper, we
use the cepstral coefficients. The audio signal is first win-
dowed with Hanning window, and then the discrete short-time
Fourier transform (STFT), X(ωk), is computed. After that,
the energies of n-th sub-band can be given by

e(n) =
1

Un − Ln + 1

Un∑
k=Ln

|X(ωk)|2, (4)

where Ln and Un denote the lower and upper frequency in-
dices of each sub-band.

In Reference [5], sub-band energies {e(n), n =
0, 1, . . . , N − 1} are normalized by its maximum elements.
Here, we first perform a logarithm operation and get log[1 +
e(n)]. (Note that usually e(n) >> 1, so log[1 + e(n)] ≈
log[e(n)]. Adding 1 can avoid the log-energy → −∞ when
e(n) → 0.) It can compress the dynamic range and reduce
the quantization bits, just like the μ-law transformation.

If we normalize the log-energies, it will be sensitive to
the amplitude scale which may be introduced in some audio
coding. We can find that if e(n) scales to αe(n), the log-
energy will be

log[1+αe(n)] ≈ log[αe(n)] ≈ log(α)+ log[1+ e(n)]. (5)

This means that amplitude scaling brings a offset in log-
energies. We can use the discrete cosine transform (DCT),

c(m) =
N−1∑
n=0

log[1 + e(n)] cos
2π(n + 1/2)m

N
, (6)

to get rid of it by discarding c(0). Another advantage of the
DCT is that it is close to the Karhunen-Loeve transform and
thus it tends to decorrelate the original log-energies [10]. We
use {c(m), m = 1, 2, . . . , M, M ≤ N} as the feature, which
is in fact a type of cepstral coefficients.

4. TWO-STAGE METHOD

The histogram pruning algorithm gains fast search speed at
the cost of losing time order information of the query sig-
nal. For example, if the VQ code series of the query signal
and the stored signal are {a, b, a, c, d} and {b, a, d, a, c}, re-
spectively, their histograms will be identical and S(hQ,hS)
will achieve maximum. In the practice applications, this may
bring false acceptance. On the other hand, if the codebook
used in VQ can not describe the feature vectors well, i.e.,
when VQ has much distortion, using the histogram pruning
algorithm solely will not achieve good results, even when the
sub-window method is also employed.

In fact, we can add a second stage after the histogram
pruning to refine the results, as shown in Fig. 2. In the second
stage, we use distance of the features as the refining crite-
rion, which can make full use of the temporal information.
Considering the computational complexity, we can select the
absolute distance:

d(l) =
P∑

p=1

M∑
m=1

|cQ
p (m)− cS

l+p(m)|, (7)

where P is the number of frames of the query signal, and M is
the dimension of the feature. {cQ

p (m), m = 1, 2, . . . , M} and
{cS

p (m), m = 1, 2, . . . , M} are the features of p-th frame of

IV 86

codefeature
stored
signal

Database

refine retrieval

codefeature
query
signal

codebook

result

Pre-processing

Processing

2nd
stage

1st
stage

Fig. 2. Block diagram of the proposed two-stage method.

the query signals and stored signal, respectively, and l denotes
the location of the stored signal segment.

Suppose the first stage output a coarse location lc. In the
second stage, we find a location lf which gives the minimum
distance in the interval L = [lc−L, lc+L]. (Here, we simply
assume lc − L and lc + L does not exceed the boundaries of
the stored signal.)

lf = arg min
l∈L

d(l). (8)

Compare d(lf) with the distance threshold dT , we can deter-
mine accept or reject it.

In order to improve the search speed, we borrow a partial
distance technique, which was originally proposed by Chen
et al. for fast vector quantization [11]. Its basic idea is that
during the calculation of the distance, if the partial distance
exceeds the previous minimum distance, this location is re-
jected without completing the distance calculation.

Because the location lf is more likely located at lc, this
means that the minimum distance is more likely achieved
when l = lc. In the partial distance searching, the earlier the
minimum distance is achieved, the more easily the partial dis-
tance is rejected. So we search from lc to the two sides, which
can further reduce the computational burden. The refine stage
can be summarized as follows.

1. Calculate the distance at location lc and set dmin :=
d(lc), lmin := lc.

2. For i = 1, 2, · · · , L:

(a) Set l := lc + i, and perform a partial distance
search. If the calculation is not broken, it means
d(l) < dmin, then dmin := d(l), lmin := l.

(b) Set l := lc − i, and perform a partial distance
search. If the calculation is not broken, it means
d(l) < dmin, then dmin := d(l), lmin := l.

3. If dmin ≤ dT , then accept it; else, reject it.

Table 1. Pre-processing time for 1-h signal
Step CPU Time

Feature Extraction 3.60 s
Vector Quantization 11.27 s

Table 2. Search time for 10-h stored signal
Query Signal DurationStage

2 s 5 s 10 s
First Stage 0.0733 s 0.0741 s 0.0798 s

Second Stage 0.0028 s 0.0029 s 0.0040 s

5. EXPERIMENTAL RESULTS

In this section, we present some typical simulation results to
demonstrate the performance of the proposed algorithm. In
the feature extraction, the frame length was 0.016 s, and the
frame step was 0.008 s. The frequency band of 0-4 kHz were
equally divided into 16 sub-bands (N = 16), and 8 cepstral
coefficients were chosen as the feature (M = 8). In VQ, the
codebook size was 1024, which is equal to the number of the
histogram bins (B = 1024). All the simulations were done
on a microcomputer (AMD Sempron, 1.6 GHz).

5.1. Search speed

In this experiment, we investigated the search speed of the
two-stage method. The stored signal was 10-h news broadcast
(whose sampling rate was 8 kHz). The query signals were 100
randomly chosen segments from the stored signal and each
query signal occurred once in the stored signal.

The central processing unit (CPU) time needed for pre-
processing 1-h signal is listed in Table 1. We can see that the
pre-processing totally costs approximately 0.4% of the signal
duration.

Besides the stored signal duration, the searching time
mainly depends on the detection threshold. We set ST =
0.6P , dT = 20.0P , where P is the frame number of the query
signal. In the second stage, the search scope was P/5 frames
(L = P/5). Using these parameters, there was neither false
acceptance nor false rejection in the experiment. The average
search time for one query is listed in Table 2. We can see that
the time used in the second stage is about 4% of that in the
first stage.

5.2. Search accuracy

We performed two experiments to evaluate the search accu-
racy. In the experiments, the stored signal was 70 MPEG
Layer3 (MP3) songs (about 5 hours) whose bit rates are 128
kbps. The query signals were 1000 randomly chosen 2-
s segments from the stored signals. We use the equal er-
ror rate (EER), which is achieved when the false acceptance

IV 87

20 25 30 35 40 45 clean
0

2

4

6

8

10

12

14

 SNR (dB)

 E
E

R
 (

%
)

1st stage
2nd stage

Fig. 3. Search accuracy (EER versus SNR).

16 32 48 64 80 96 original
0

5

10

15

20

25

 Bit Rate (kbps)

 E
E

R
 (

%
)

1st stage
2nd stage

Fig. 4. Search accuracy (EER versus bit rate).

rate equals the false rejection rate by adjusting the detection
threshold, as the evaluation criterion.

In the first experiment, we added white Gaussian noise to
the query signals with different signal-to-noise ratios (SNRs).
The EERs are plotted in Fig. 3. We can observe that for each
stage, the EERs are both decreasing with the increasing of
SNRs. After the second stage refining, the EERs are relatively
reduced about 50%.

In the second experiment, we compressed the query sig-
nals with different bit rates. The EERs are illustrated in Fig. 4.
Similar with the above experiment, the second stage also out-
perform the first stage.

Note that through other experiments, we found that the
performance will be much better if the signal is speech or the
query signal has longer duration. This is probably a conse-
quence of that the features we used are more suitable to de-
pict speech. These two simulations only give a conservative
estimate of the proposed method.

6. CONCLUSIONS

This paper has proposed a two-stage method for specific au-
dio retrieval. The search process is divided into two stages.
The first stage is a coarse retrieval process, which utilize
the histogram pruning algorithm. The second stage is a fine
search and verification process, which employs partial dis-
tance technique. The experiments showed that via the second
stage refine, the search accuracy can be obviously improved
while the search time only increase about 4%.

In addition, although we only discussed the specific audio
retrieval in this paper, the proposed method can be applied to
specific video retrieval. Further research needs to be done.

7. REFERENCES

[1] Y. Wang, Z. Liu, and J.-C. Huang, “Multimedia content
analysis-using both audio and visual clues,” IEEE Signal Pro-
cessing Magazine, vol. 17, no. 6, pp. 12–36, Nov. 2000.

[2] J. Foote, “An overview of audio information retrieval,” Multi-
media Systems, vol. 7, no. 1, pp. 2–10, Jan. 1999.

[3] J.H.L. Hansen, R. Huang, B. Zhou, et al., “Speechfind: Ad-
vances in spoken document retrieval for a national gallery of
the spoken word,” IEEE Transactions on Speech and Audio
Processing, vol. 13, no. 5, pp. 712–730, Sept. 2005.

[4] G. Smith, H. Murase, and K. Kashino, “Quick audio retrieval
using active search,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP’98), Seattle, May 1998, pp. 3777–3780.

[5] K. Kashino, T. Kurozumi, and H. Murase, “A quick search
method for audio and video signals based on histogram prun-
ing,” IEEE Transactions on Multimedia, vol. 5, no. 3, pp. 348–
357, Sept. 2003.

[6] K.-M. Kim, S.-Y. Kim, J.-K. Jeon, et al., “Quick audio re-
trieval using multiple feature vectors,” IEEE Transactions on
Consumer Electronics, vol. 52, no. 1, pp. 200–205, Feb. 2006.

[7] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recog-
nition, Prentice Hall PTR, Upper Saddle River, NJ, 1993.

[8] W. Liang, S. Zhang, and B. Xu, “A histogram algorithm for
fast audio retrieval,” in Proceedings of the 6th International
Conference on Music Information Retrieval (ISMIR 2005),
London, September 2005, pp. 586–589.

[9] J. Gu, L. Lu, R. Cai, et al., “Dominant feature vectors based
audio similarity measure,” Lecture Notes in Computer Science,
vol. 3332, pp. 890–897, 2004.

[10] T. F. Quatieri, Discrete-Time Speech Signal Processing: Prin-
ciples and Practice, Prentice Hall PTR, Upper Saddle River,
NJ, 2002.

[11] D.-Y. Cheng, A. Gersho, B. Ramamurthi, et al., “Fast search
algorithms for vector quantization and pattern matching,” in
Proceedings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP’84), San Diego,
Mar. 1984, pp. 9.11.1–9.11.4.

IV 88

