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ABSTRACT
We present a system to index and search conversational speech
using a scoring heuristic on the expected posterior counts of
phone n-grams in recognition lattices. We report signi cant
improvements in retrieval effectiveness on ve human lan-
guages over a strong 1-best baseline. The method is shown to
improve the utility (mean average precision) of the retrieved
lattices’ rank order and to do so with a search cost negligi-
ble compared to the fastest yet known methods for the linear
scanning of phonetic lattices.

Index Terms— Information retrieval, Speech processing,
Speech recognition, Natural languages, Natural language in-
terfaces

1. INTRODUCTION

Over the past decade, signi cant progress has been made to-
wards systems capable of indexing and searching large vol-
umes of spoken communications[1]. This area of interest
is generally referred to as spoken document retrieval (SDR).
A SDR system enables a user to enter a natural-language or
word-based query and to retrieve spoken documents ( les, ut-
terances, etc.) containing those terms.
Many current systems combine an automatic speech recog-

nition (ASR) process, which decodes speech into word-based
text, with a text-based information retrieval system. While
these systems perform reasonably well when applied to data
with low ASR word error rates and medium sized vocabular-
ies (e.g., broadcast news), alternative methods are often nec-
essary. This is particularly so in conversational speech, in
which irregular prosody and out of vocabulary (OOV) terms
are prevalent. For information seekers, it is precisely because
these OOV terms (e.g., names of people and places) are rare
that they are informative—and so special care must be taken
to support their detection. This paper focuses on detecting
these rare terms—vocabulary independent audio search.
Research in vocabulary independent SDR has largely fo-

cused on subword indexingmethods [2] and ef ciently search-
ing more complex representations of the recognition hypothe-
ses, such as phonetic lattices [3, 4]. Because a linear search

through many lattices is still costly, two-stage search systems
have also been considered. Two-stage search uses a fast, high
recall, low precision ltering system to produce a candidate
set of lattices for further scanning. In [5], discriminating
fragments of phone sequences are indexed to produce an un-
ordered set of these candidates. Our work is similar in that we
use an inverted index on lattice features (in our case, expected
phone n-gram counts) to retrieve the segments. Our approach
differs in its choice of indexing unit, its focus on very fast
search (we do not allow for a costly second stage) and in that
we produce an ordered list of lattices. We focus on improving
the utility (i.e., the rank order) of the lattices in one stage.
Our results are also signi cant in the breadth of languages

we examine. We report experiments in English, Spanish,Man-
darin Chinese, Persian Farsi, and Levantine Arabic conver-
sational speech. The methods developed are universally ap-
plicable, and have thusfar been extended to handle many of
the world’s languages. This motivates our emphasis on ap-
proaches such as phonetic lattice indexing which do not re-
quire the impracticable costs of training large vocabulary con-
tinuous speech recognizers on resource poor languages.

2. LATTICE GENERATION

Before we can index or search our spoken documents, we run
phonetic recognition to produce a compact set of hypotheses—
a phonetic lattice—for the phone sequences observed in the
audio. The acoustic models used to produce these lattices are
created using HTK’s embedded training functionality. For the
experiments presented in this work, new models are trained
for each language. Prior to training, word-based transcrip-
tions are converted to phonemes using a rule-based translit-
erator (RBT) [6]. The HMM models are then trained as left-
context dependent phones and have three states, each with 17
Gaussian mixtures.
Phonetic lattices are produced using an alternative Viterbi

implementation called the Token PassingModel [7] contained
within HTK. In this formulation, a token is passed from state
to state which contains the log probability of the current path
as well as a record of the previous states or models already
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visited. At each state, a copy of the present token is passed to
each of the connecting states. When a state is passed multiple
tokens, they are each examined and only the token with the
highest probability is retained. For lattice generation, multi-
ple tokens can be saved at each state in order to retain multiple
hypotheses. Consequently, as the process is directed to retain
more tokens at each state, a larger number of hypotheses are
recorded, resulting in a deeper lattice. Increasing the number
of tokens, however, incurs a higher computational cost, both
during decoding and, later, indexing.
Many other parameters of the lattice generation process

can also signi cantly impact the system’s balance of perfor-
mance and speed. Two of the most relevant control parame-
ters are the insertion penalty and languagemodel scale. It was
discovered empirically that the parameter combination that
maximizes phone accuracy does not consequently maximize
search performance. In fact, the parameters that maximize re-
trieval accuracy (measured as mean average precision), tend
to produce a phone lattice with a moderately higher level of
insertion errors. For this work, we biased the results against
our new approach and chose parameters which roughly maxi-
mized mean average precision on our baseline search system.

3. LATTICE INDEXING

After mapping an audio le to its phonetic lattice representa-
tion, we must further transform it to facilitate ef cient search.
Speci cally, we wish to extract a set of features which can be
stored and retrieved quickly (e.g., in an inverted index) and
which succinctly represent the phonetic information observed
in the audio.
Given a lattice L containingmany paths � (i.e., � ∈ L), the

expected number of occurrences for phone n-gramX over all
paths is

EPL
[C(X)] =

∑

�∈L

PL(�) C�(X).

Here, C�(X) denotes the number of times phone n-gram X

occurs in lattice path �. The posterior distribution PL(�) is
de ned as

PL(�) =
exp {

∑
α∈� S(α)}∑

ν∈L exp {
∑

β∈ν S(β)}
,

where exp{·} denotes exponentiation, as we assume the score
S(α) for an arc α on the path is a log probability (perhaps
simply the sum of the acoustic and languagemodel log proba-
bilities). In practice, these valuesmay be ef ciently computed
using a variant of the forward-backward algorithm. This func-
tionality is currently supported by the SRI languagemodeling
toolkit [8].
For each lattice in the corpus, we compute the expected

phone n-gram counts for n ≤ N . Phone n-grams having ex-
pected count less than τ are discarded. These n-grams and

their associated counts are then indexed using a straightfor-
ward inverted index. While larger τ ′s decrease the total in-
dex size, we found the default choice of τ = 1 × 10−4 to
produce manageable indices and excellent results. A prelim-
inary study did show mean average precision monotonically
decreasing for increasing τ . We x N atN = 5.

4. SEARCHING

A rule-based transliterator (RBT) is rst used to map query
words into their phonetic components [6]. This mapping may
use both context sensitive rules and, when available, pronun-
ciation dictionaries.
After mapping the query into it’s phone sequence, we ex-

tract a set Q of phone subsequences with length n, N −Δ ≤
n ≤ N. The integer Δ simply parameterizes the smallest in-
dexing unit used for the search. Note, if the full query’s phone
sequence is smaller thanN , the length of the sequence is used
as the largest unit for search. Naturally, indexing sequences
are also constrained to have a positive length. For example, if
we are searching for goodness with N = 5 and Δ = 1, we
rst apply the RBT

goodness RBT
−−−→ [ � � � � � � ],

and then extract the phone subsequence set

Q = { � � � � � � � � � � � � � � � � � � � � � � � � � � }.

If instead we are searching for fun (with the same N and Δ),
we extract the subsequence set

Q = { � 	 � 	 � � � 	 � }.

We roughly expect a larger value ofΔ to improve retrieval
when phone recognition is very poor (i.e., when our query
phone subsequences will not have accurately indexed counts
for n = N ). On the other hand, if Δ is too large, the very
short phone subsequences utilized will be only poor discrim-
inators for the underlying terms (e.g., lattices not containing
goodnessmay nevertheless include the phone 1-gram � ).
To compute the score for a query and lattice L, we sum

the posterior expected n-gram counts associated with each el-
ement of Q,

score(query, L) =
∑

q∈Q

log {EPL
[C(q)]} . (1)

The logarithm can be thought of as a damping function which,
due to it’s singularity at log {0}, acts to aggressively penal-
ize lattices having a near zero count for some phone subse-
quence. We smooth the counts by giving absent subsequences
a very small count ε � 1, which parameterize the penalty for
a missing n-gram. We found our results to be rather insen-
sitive to choice of ε, which we set to ε = 1 × 10−15. Note,
becauseQ contains more subsequences of shorter lengths and
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because every short subsequence is itself a portion of a longer
sequence, lattices are most severely penalized if they do not
contain the short elements of Q. This conforms to our in-
tuition that lattices lacking even the shortest phone subse-
quences in Q are unlikely to correspond to our query term.
One advantage of this search heuristic is that Equation 1

may be computed very ef ciently. Queries having a phone se-
quence of lengthm require only |Q| =

∑N

n=N−Δ
m− n + 1

lookups in the inverted index—a marginal cost in compari-
son to the fastest known methods for the scanning of lattices.
At the same time, because score(query, L) is proportional to
the probability of a term occurring in the audio, it naturally
provides a suitable ranking function for the lattices [9].

5. EXPERIMENTS

To evaluate the search performance of this approach, test data
in the form of audio and transcripts was assembled in the fol-
lowing languages: English, Spanish, Mandarin, Levantine,
and Persian. Each test set was drawn from a corpora of con-
versational telephone speech andwas excluded from data used
to train the associated phonetic recognizer. All data used for
training and testing are publicly available and were obtained
through the Linguistic Data Consortium1. Table 1 details the
source and size of each of the test sets used in the experi-
ments presented here. A list of query words was generated
from the actual transcripts for the evaluation audio in each
language. With the exception of Mandarin, all words contain-
ing 3 or more characters were included in the query list. For
Mandarin, as single characters correspond to whole words,
all words were included. We have maintained the same eval-
uation sets from [10] to establish a strong baseline for our
measurements.
As in [10], we report mean average precision (MAP). Pre-

cision p is simply the proportion of documents retrieved (at a
point in a ranked list) which are relevant. To compute MAP,
the precisions at each relevant document in a query’s ranked
list are averaged. The mean of these averages is then com-
puted over the set of all queries. For an average query’s ranked
list, MAP gives the expected precision at a relevant document,
and so is a measure of the utility of a search system for a user.
Formally, if p(r) denotes the precision at cut-off rank r for
a system returning D documents with R total relevant docu-
ments, and rel(r) is a binary function indicating the relevance
of a given rank, then the average precision p̂ for a query is

p̂ =

∑D

r=1
p(r)rel(r)

R
.

The MAP is then simply the average of p̂ over all queries.
For the lattice search results that follow, we used 5 to-

kens during the HTK decoding process to produce the lat-
tices, indexed n-grams of up to length 5, and searched with

1http://www.ldc.upenn.edu/

3 Tokens 5 Tokens
Language Speed (xRT) MAP Speed (xRT) MAP
English 0.36x 29.6 0.89x 30.5
Spanish 0.36x 24.5 1.22x 25.4

Table 2. Comparison of indexing speed and search perfor-
mance (in MAP) using 3-token and 5-token settings for lattice
generation.

n-grams of length 3, 4, and 5 using parameter values N = 5
and Δ = 2. We do not claim any optimality in these pa-
rameters and, although they yield encouraging results, they
certainly merit further examination.
The baseline 1-best search approach seeks to optimize

the search of errorful 1-best output using a weighted match
with the query terms. The phones of the query are matched
with the phones of the 1-best output by a dynamic program-
ming minimum edit distance calculation that uses weights for
phone substitutions, insertions, and deletions from a set of
language-speci c confusion matrices. The confusion matrix
for a language seeks to represent a mapping from the pho-
netic space of reference transcripts (transliterated by the same
mechanism used for queries) to the phonetic space of the rec-
ognizer output. This mapping encapsulates recognition error,
incorrect transcription error, and pronunciation variation not
captured by the query transliterator.

5.1. Results

Our experiments with the proposed indexing and search strat-
egy demonstrate a signi cant improvement in MAP perfor-
mance over our baseline 1-best results. For comparison, Table
3 includes both the results from [10] and the results of a 1-best
search using an updated version of the phonetic recognizer
used for the lattice search. The improvements in the most re-
cent phone recognizer are primarily due to additional training
data and various algorithmic re nements including: the RBT,
the forced alignment procedure, languagemodel training, and
parameter optimization (as mentioned in Section 2).
Table 3 shows that the updated 1-best recognizer produces

signi cant improvements in terms of both phonetic accuracy
and mean average precision. However, substantial additional
gains are achieved by employing the proposed lattice-based
approach. Improvements over the newest 1-best technique
were measured for each of the ve languages tested. The rel-
ative improvement in MAP ranged from 15% for Mandarin
Chinese to 106% for Persian Farsi.
As mentioned previously, 5 tokens were used for the lat-

tice generation process. While this resulted in our largest ob-
served gains in retrieval performance, the computational cost
of maintaining 5 tokens per state during Viterbi decoding is
substantial. Table 2, however, shows that the computational
cost of lattice generation can be signi cantly mitigated by re-
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Language Source Duration (minutes) Utterances Unique Query Words
English CallHome 148.08 2175 2204
Spanish CallHome 225.8 3908 3817
Mandarin CallHome 83.2 2888 1845
Levantine EARS 649.8 6648 9890
Persian CallFriend 239.7 5903 4777

Table 1. Source and collection statistics for search evaluation data sets.

1-best (2005) 1-best (2006) Lattice
Language Acc. MAP Acc. MAP MAP
English 38.1 22.5 43.4 23.2 30.5
Spanish 48.4 15 50.9 21.5 25.4
Mandarin 37.5 5.7 42.2 9.8 11.3
Levantine - 6.9 37.2 8.1 12.3
Persian 30.5 4.0 43.5 5.3 10.9

Table 3. Phone accuracy and search effectiveness for ve lan-
guages using the original 1-best recognized phonetic output
(2005), the 1-best output from the updated phone recognizer
(2006), and the proposed lattice-based system.

ducing the number of tokens to 3. For both English and Span-
ish, reducing the number of tokens resulted in increases in
decoding speeds by factors of 3 and 2, respectively, while
suffering only minor losses in MAP. It should be noted that
all experiments were conducted on a Linux machine with an
AMD 2.0 GHz processor.
One strength of our baseline system is that it accounts for

the confusability on phones by estimates directly measured on
held out data. The lattice method, on the other hand, does not
incorporate any notion of nearness in mismatched phones, so
that we might expect it to perform worse on languages with
low recognition accuracy. Table 3 demonstrates that this is
not the case. The lattice indexing approach is surprisingly ro-
bust in the presence of recognition error, presumably because
a suf cient number of alternative phone hypotheses are rep-
resented by the lattices. As Table 2 indicates, this remains
true even with many fewer paths in the lattice (i.e., for fewer
tokens).

6. CONCLUSION

We have proposed a lattice indexing and search procedure
for spoken utterance retrieval of conversational speech. The
method ef ciently indexes and searches phonetic lattices, show-
ing signi cant improvements in retrieval performance over
our baseline, while maintaining a system that is faster than
real-time. By demonstrating signi cant performance increases
across ve languages, we have shown the method to be sur-
prisingly robust both to variation in human language and the

error characteristics of phonetic recognition systems.
While our purpose was to maximize the utility of the re-

trieved lattices as quickly as possible, future work might ex-
tend this approach by reranking the returned list with a more
costly lattice scanning system [3]. We also hope to explore
larger collection sizes. For very large collections, an index
may potentially grow to become unmanageable. To constrain
its size, we may consider the careful selection of indexing
features by observable phonotactic constraints. We hope we
have provided a sound basis for this work.
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