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ABSTRACT

We present a novel framework for triaging (prioritizing and 

discarding) data to conserve resources for a speaker identification 

(SID) system.  Our work is motivated by applications that require a 

SID system to process an overwhelming volume of audio data.  

We design a triage filter whose goal is to conserve recognizer 

resources while preserving relevant content.  We propose triage 

methods that use signal quality assessment tools, a scaled-down 

version of the main recognizer itself, and a fusion of these 

measures.  We define a new precision-based measure of 

effectiveness for our triage framework.  Our experimental results 

with the 35-speaker tactical SID corpus bear out the validity of our 

approach.

Index Terms— Speaker recognition, speech intelligibility, 

signal detection, speech processing, acoustic signal processing

1. INTRODUCTION 

With the existence of ever expanding archives of unlabeled audio 

data, the need for techniques to search and sort these archives 

based on audio content is gaining importance.  One such technique 

is speaker indexing, where a large audio archive is processed with 

an automatic speaker identification (SID) system to retrieve data 

likely spoken by a set of desired speakers and a sorted list of data 

likely spoken by these speakers is presented the user for further 

processing, analogous to a sorted list of results from a search 

engine query.  We assume that the user will not evaluate the entire 

output set from the recognizer, but rather a small fraction (e.g., the 

highest scoring 1%).  As the archive volume increases, the 

straight-forward approach of simply scoring all data with the SID 

system will not scale well for a fixed compute allocation.  Thus, a 

method is sought to discard a large fraction of the input data prior 

to SID processing while maximizing the precision of the retained 

data, so as to increase the usefulness of the system from the user’s 

perspective. 

We address this problem by introducing a triage framework 

wherein the archive data is first processed to winnow out segments 

that are likely not to be scored well by the SID system (and so not 

appear in the top ranked data viewed by the user) saving SID 

computations for more “relevant” data.  We consider a naïve triage 

method as a baseline and introduce more sophisticated approaches 

that yield better performance.  To evaluate performance of the 

triage system relative to the user’s experience, we define a new 

measure of effectiveness based on precision to compare precision 

of various smart triage approaches to the naïve triage baseline. 

2. TRIAGING METHODS 

The most straightforward method for reducing the computation 

burden of a recognizer is to simply decimate the input data (or 

equivalently, to discard a fixed proportion of data at random).  

This method, which we call naïve or random triage, will not, on 

the average, change the proportion of data that will be correctly 

classified.  Random triage serves as a useful baseline when 

evaluating other triage methods, since any type of “smart” triage 

should refine the retained data, i.e., increase the proportion of data 

that will be correctly classified, in addition to reducing the 

computational load by discarding data. 

One approach for smart triage involves making signal quality 

measurements on the input data. It is well known that the 

performance of SID systems tends to degrade in the presence of 

distortion; therefore, eliminating inputs in which these distortions 

are detected should simultaneously reduce the computation load on 

the recognizer and increase the volume of correct material 

presented to a user.  For this purpose, we seek to identify signal 

features that correlate well with SID performance.  We considered 

using various candidate features, including signal-to-noise ratio 

(SNR), the presence of silences or tones, pitch, and other spectral 

and cepstral statistics.  A survey of available methods determined 

that two existing tools would suffice to conduct a proof-of-concept 

study of the triage framework. 

The first tool chosen was an SNR estimator adapted from the 

version available from NIST [1].  We reasoned that an SNR 

estimate would require a simple, fast calculation and would 

correlate with SID performance since speech samples that are 

degraded by noise would likely be prone to more recognition 

errors.  The second was an objective speech quality assessment 

tool available as ITU specification P.563 [2].  As shown in  Figure 

1, this tool calculates a range of characteristic speech parameters 

and computes a score between 1 and 5 (5=best) that is indicative of 

subjective speech quality. The P.563 tool is designed to assess 

speech quality without a reference signal by identifying 46 signal-

related parameters, including basic speech descriptors such as 

pitch and speech level, indicators of unnatural speech based on 

vocal tract parameters, noise analysis parameters, and parameters 

related to interruptions or mutes.  P.563 was designed to correlate 

well with human perception, and has a measured correlation 

coefficient of p=0.9. 
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We used the signal quality tools out of the box, with the 

understanding that implementation in a real system would require 

optimizing the tools to run much faster than any SID system, 

which we posit could reasonably be done.  The scope of the 

present work is to demonstrate the feasibility of a triage framework 

rather than to optimize the measurement tools. 

Figure 1: Details of ITU P.563 method for objective speech 

quality assessment. 

A second approach to triage is to design a fast, scaled-down 

version of the full SID recognizer and use its output score to pass 

data selectively to the full recognizer. The rationale for this 

method is that a scaled-down recognition system, while not 

maintaining the accuracy of a full scale system, would still provide 

a potential means of rejecting likely misclassified inputs. 

Finally, we consider a fusion triage system which uses the 

SNR, P.563 and fast recognizer scores as elements of a feature 

vector.  We construct decision regions in the three-dimensional 

space and discard files accordingly.  For the current study, only 

decision regions corresponding to hypercubes derived from the 

single feature regions have been considered for the sake of 

simplicity, but arbitrary decision regions may be employed. 

3. TRIAGE ANALYSIS 

Performance of speaker recognition systems is traditionally 

reported using (prior independent) detection error tradeoff (DET) 

curves that describe the relationship between missed detections 

and false alarms [3].  Although useful as a measure of core 

performance, DET curves are not well suited to evaluating the 

utility of triage for an end user.  Rather, we seek to evaluate the 

impact of combining audio triage and speaker recognition on the 

quality of the information presented to the user.  For this purpose, 

we choose to use precision as our metric and we propose a 

measure of effectiveness to evaluate the impact of audio triage on 

a speaker recognition system. 

3.1. Precision Metric 

Precision measures the relevance of information in a sorted queue 

(the output queue provided to the user for further evaluation, in our 

case).  At any given point in the queue, the precision is the 

cumulative proportion of correct recognitions, i.e., matches 

between the hypothesized speaker and the true speaker.  We used 

the precision formulation described in [4] where, for a queue of 

length N sorted in descending order and for a given richness (a

priori target probability) r, the precision at any level of the sorted 

queue is given by 
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where Pd(i) and Pf(i) are the cumulative proportions of detections 

and false alarms, respectively, and i=1,2,…,N.

3.2. Triage Measure of Effectiveness 

Since random triage can always be used to achieve a desired 

reduction in computational load, it serves as a useful baseline for 

comparison with more sophisticated triage approaches.  Rather 

than presenting separate curves comparing precision for smart and 

random triage at all levels of a queue, we instead propose a 

summary statistic to characterize triage measure of effectiveness 

(MOE): the precision gain of feature-based triage relative to 

random triage (discarding the same number of files) at 1% of the 

sorted queue.  Thus a precision gain of 0 would indicate that the 

triage scheme under consideration is no better than random triage, 

while a positive MOE indicates an improvement. 

An example of the proposed triage MOE is illustrated in 

Figure 2.  The plots show precision vs. proportion of queue for 

random (lower curve) and smart (upper curve) triage.  Details 

regarding the corpus and experimental setup are presented in 

Section 4.  For this example, the precision at 1% of the queue 

increases from 0.42 with random triage to 0.71 with feature-based 

triage, resulting in an MOE of 69%. 

Relative gain at 

1% through queue               

= (0.71-0.42) / 0.42  

= 69%

P
re

c
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n
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Figure 2: Illustration of use of proposed triage measure of 

effectiveness (MOE).  Red line (lower plot): Precision vs. queue 

using random triage.  Blue line (upper plot): Precision vs. queue 

using methods detailed in Section 4.

4. EXPERIMENTAL FRAMEWORK 

In our experimental setup, we passed test input data in parallel 

through two distinct pathways: 1) through a SID recognizer trained 

on data separate from the test data, and 2) through a triage filter.  

The triage filter used 1, 2, or 3 triage features (SNR, P.563, and 

fast recognizer score), as well as a threshold for those features, to 

generate a mask.  We then applied this mask to the SID output 

scores to emulate the process of discarding data via triage, 
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measured the precision of the masked output queue, and computed 

the triage measure of effectiveness. 

4.1. Speaker Identification System 

The SID system used for this study is an adapted Gaussian Mixture 

Model recognizer developed at Lincoln Laboratory (see [5] for 

details).  Target models (one for each speaker) are adapted from a 

64-mixture universal background model trained using an 

aggregation of data from all speakers.  For each input file, a log 

likelihood ratio score is computed for each speaker model and the 

highest score and speaker label are reported as the SID output.  As 

the main focus of this work was on triage approaches, emphasis 

was not placed on optimization of the SID system for this data set. 

4.2. Corpus 

We selected the Tactical Speaker Identification (TSID) speech 

corpus for our study [6].  The TSID corpus contains 26 distinct 

English sentences spoken by each of 35 speakers and using up to 4 

military transmitters and 7 military receivers.  One of the receivers 

was a handset-mounted wideband microphone that provided the 

reference signal.  (The corpus actually contains additional tasks 

from each speaker as well, including utterances of digits and 

giving impromptu directions based on a map, but we did not use 

the former because the utterances are too short, and we did not use 

the latter because of the non-uniformities in the utterances.)  The 

receivers used for the data collection were dispersed 

geographically along a two-mile stretch of terrain, and the 

transmitters were collocated, as shown in Figure 3.  Data was not 

available from all combinations of speaker, receiver, and 

transmitter.  The resulting 17,370 sentences used for this study 

have a mean duration of 4 seconds, which is generally shorter than 

ideal for effective speaker identification.  Of these files, 1630 (all 

the reference wideband files from transmitters 1 and 2) were used 

to train the target speaker models for the GMM recognizer. 

Figure 3: Relative positioning of transmitters and receivers for 

TSID data collection.

What renders the TSID corpus especially attractive for the 

present study is the presence of real distortions for some 

receiver/transmitter pairs.  Although TSID has a relatively small 

number of speakers, we believe that using these real distortions 

rather than artificially adding distortions to existing larger corpora 

was more relevant for examining our triage techniques.  The 

distortions are a result of the topography and intrinsic properties of 

the transmitters and receivers, and they manifest themselves as a 

variety of audible phenomena, including high and low frequency 

tones, clipping and robotization, and additive noise.  We expected 

that some of these distortions would degrade SID performance, 

making this an ideal corpus for a triage study.  In addition, the 

presence of data samples from a reference wideband source 

allowed us to label these utterances as “good.”  We expected that 

these utterances would yield the best recognizer performance.

4.3. Decision Regions 

We analyzed the distribution of the TSID files in the SNR-P.563 

space.  The 17,370 TSID files were manually classified based on a 

subjective listening assessment.  For each combination of 

speaker/receiver/transmitter, we listened to 1 sentence (out of 26 

total) and assigned all 26 sentences from that triple to one of five 

categories based on subjective perception: 1) reference wideband; 

2) noisy or unintelligible; 3) robotization or clipping present; 4) 

low or high frequency background tone present; and 5) other 

distortion present.  Of these, only membership to Category 1 is 

objective, since we know which data was recorded in the reference 

wideband condition. 

The P.563 vs. SNR scores were then plotted for the sentences, 

as shown in Figure 4.  We observe that “good” files, i.e., files in 

Category 1, tend to have high SNR and high P.563 scores.  (We 

note that SNR estimates greater than 50 dB are probably 

erroneous, as those speech samples do not sound particularly 

clear.)  Also, “bad” files, in categories 2, 3 or 4, tend to have low 

SNR or low P.563 scores.  Consequently, with the expectation that 

files in Category 1 would yield good SID performance and files in 

categories 2, 3 and 4 would yield poorer performance, we 

segmented the (SNR, P.563) feature space into two classes, as 

shown in Figure 4. Our triage decision rule is then: discard 

utterances with low SNR ( 25 dB) or low P.563 score ( 3).  We 

remark that since these decision thresholds (SNR=25dB and 

P.563=3) were chosen without any particular optimization, one 

would expect other multi-feature decision regions to produce better 

performance.

Figure 4: SNR and P.563 scores for TSID files, according to 

subjective perceptual categories: Green circle=1, Red triangle=2, 

Blue plus sign=3, Cyan star=4, Black X=5.  See text. 

Similarly, a decision region using the fast recognizer score 

was obtained using the data plotted in Figure 5, which shows per-

category histograms of the fast recognizer scores.  For this study, 

the fast recognizer was a GMM SID system that used 2 mixtures 

per speaker model and 1-out-of-10 frame decimation.  We observe 

that there is considerable overlap between scores for Category 1 

(“good”) files and those of other categories.  For this study, we 

chose a score of 0 as a decision threshold for this feature.  During 

development testing, we swept out fast recognizer feature scores 

with 4, 8, 16, and 32 mixtures and thresholds varying from -2 to 2, 

but found that using 2 mixtures and a threshold of 0 yielded nearly 

the greatest precision gain, so we show results only for that 

combination. 

Discard files 

outside this 

region 
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Retain only 

files with 

these scores

“Good” files 

(Category 1)

Noisy or 

unintelligible files 

(Category 2)

Figure 5: Fast recognizer scores for TSID corpus (colors indicate 

subjective perceptual categories: Green=1, Red=2, Blue=3, 

Cyan=4, Black=5; see text). 

4.4. Results 

Table 1 shows the results of using the various triage methods 

discussed in this paper.  For triage using a single feature, at an 

approximately constant discard rate of 60%, SNR is the most 

useful feature (MOE=53%), followed by P.563 and then the fast 

recognizer.  Thus, it is possible to reduce the computation load on 

the recognizer by 60% while increasing the relative precision (with 

respect to random triage) of the top 1% of the sorted queue by 

53%.  At an approximately constant discard rate of 82%, the most 

effective pair of triage features is (SNR, P.563), followed by 

(SNR, fast recognizer) and (P.563, fast recognizer).  Furthermore, 

use of all three features results in 90% of files discarded and a 

117% gain in precision relative to random triage at the 1% level of 

the queue. 

Table 1: Triage performance summary showing percent of files 

discarded and measure of effectiveness for all combinations of 

triage features.

To compare single-feature triage with multiple-feature triage, 

we selected the single feature with the best performance (SNR) 

and determined the thresholds necessary to achieve the discard 

rates shown in the two-feature and three-feature cases.  Thresholds 

of 32dB and 35dB yielded discard rates of 82% and 90%, 

respectively, with MOEs of 64% and 47%, respectively.  We 

observe that at a discard rate of 82%, SNR triage alone 

outperforms (P.563, fast recognizer) triage, but does not perform 

as well as the other two-feature combinations.  Hence, fusing 

multiple features may be better than using single features.  This is 

only an initial attempt at fusing features, as we have only used 

multidimensional decision regions whose boundaries are derived 

from intersections of single feature regions. 

5. CONCLUSIONS AND FUTURE WORK 

We presented a framework for triage of data motivated by an audio 

archive search scenario in which large volumes of data were 

processed by a SID system and the sorted results presented to a 

user.  To reduce the computational burden on the recognizer and 

boost its effectiveness to the user, a set of triage methods and 

evaluation metrics were proposed.  The TSID corpus was selected 

for this study because it contained multiple speakers and many 

instances of real degraded speech.  Three feature estimation tools 

were considered: SNR, P.563, and a fast GMM SID.  Triage using 

the SNR tool led to the greatest improvement in relative precision, 

followed by P.563 and the fast GMM SID.  Using multiple features 

for triage produced additional improvement despite the fact that 

the fusion methods used in this study were simplistic. 

We note that no effort was made to either optimize the code 

used to compute the triage features or to determine the 

computational complexity of the tools employed in this study.  

Rather, we have simply asserted that these measurements could be 

made much more efficiently than running a SID system.  The 

additional work required to verify these engineering judgments 

was beyond the scope of this study.  In addition, the selection of 

feature thresholds was performed in a fairly simplistic manner and 

more sophisticated methods, such as using supervised learning, 

may lead to additional gains in performance.  Further investigation 

of triage feature selection, computational tradeoffs, and supervised 

learning are prime candidates for future work in triage. 
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