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ABSTRACT
In this paper we propose a generalized feature transformation
approach to compensating for channel variation in speaker
veri cation (SV) applications. Channel-dependent (CD) piece-
wise linear transformations are used for feature compensa-
tion. CD transformation parameters are estimated together
with a channel-independent (CI) root Gaussian mixture model
(GMM) from training data with a variety of channel condi-
tions by using a maximum likelihood criterion. Experiments
are conducted on the 2005 NIST Speaker Recognition Evalu-
ation (SRE) corpus for several text-independent GMM-based
SV systems. Experimental results show that the proposed ap-
proach achieves relative equal error rate (EER) reductions of
8.19% and 26.24% in comparison with a traditional feature
mapping approach and a baseline system, respectively.

Index Terms— speaker veri cation, channel compensa-
tion, feature mapping, generalized feature transformation, max-
imum likelihood.

1. INTRODUCTION

How to deal with channel variation is one of the main chal-
lenges in speaker veri cation (SV) applications. Over the
years, at least three types of compensation techniques have
been studied for coping with this problem, namely feature-
domain compensation (e.g., [1, 2, 3]), score-domain compen-
sation (e.g., [4, 5]), and model-domain compensation (e.g.,
[6, 7, 8, 9]). In this study, we focus on the feature-domain
compensation, because it is not tied to any particular SV ap-
proach. Besides the well-known techniques such as cepstral
mean subtraction and RASTA ltering, a simple yet effective
feature mapping (FM) approach was proposed in [3]. Ac-
tually, many effective feature compensation techniques for
robust SV were inspired by, borrowed or adapted from the
relevant techniques invented originally for robust automatic
speech recognition (ASR). In the past decade, many interest-
ing feature compensation techniques have been proposed and
studied for robust ASR (e.g., [10, 11, 12, 13, 14, 15]), and
some of them have not been tried out yet for robust SV. In-
spired and encouraged by the promising results of the FM

approach for SV in [3], we have adopted a feature compen-
sation approach originally proposed in [15] for robust ASR
and modi ed it to deal with the channel variability for robust
SV. Experiments are conducted on the 2005 NIST Speaker
Recognition Evaluation (SRE) corpus [16] to evaluate the ef-
fectiveness of the above approach. For the convenience of
reference and the purpose of differentiation, our proposed ap-
proach is referred to as a generalized feature transformation
(GFT) approach hereinafter. The main purpose of this paper
is to report our study on this topic.

The rest of the paper is organized as follows. In Section 2,
we review the FM approach of [3]. In Section 3, we present
our GFT approach. Evaluation results are reported in Section
4. Finally, we conclude the paper in Section 5.

2. FEATURE MAPPING BASED SV SYSTEM

The feature mapping approach proposed in [3] works as fol-
lows. First a channel-independent (CI) root Gaussian mix-
ture model (GMM) with parameters λ = {ωk, μk, Σk; k =
1, . . . , K} is trained using an aggregation of data, Y = {Y1,
Y2, . . . ,YC}, from many different channels, where ωk, μk

and Σk are the mixture coef cient weight, the D-dimensional
mean vector and D×D diagonal covariance matrix of the k-
th Gaussian component respectively, and K is the number of
Gaussian components. Next a set of channel-dependent (CD)
GMMs, Λ(c) = {λ(c), c = 1, . . . , C}, are trained by adapt-
ing the root GMM, λ, using each set of channel-dependent
data Yc respectively, where λ(c) = {ω(c)

k , μ
(c)
k , Σ(c)

k ; k =
1, . . . , K(c)}, and K (c) = K .

Given an input speech utterance Y = {y1, y2, . . . , yT} of
a speaker, the most likely channel condition is rst identi ed
as the one maximizing the likelihood of channel-dependent
GMM:

c = arg max
c′

p(Y |λ(c′)) . (1)

For each feature vector yt in the utterance, the “top-1” Gaus-
sian component in GMM λ(c) is then selected:

kt = argmax
k′

p(k′|yt, λ
(c)) . (2)
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The feature vector yt is nally mapped to a channel-independent
space as follows:

xt = Σkt(Σ
(c)
kt

)−1(yt − μ
(c)
kt

) + μkt . (3)

Although the above feature mapping can be treated as a
part of the front-end processing module and is independent of
the follow-on speaker veri cation (SV) system, in this study,
we adopt the same strategy as in [3] to share the veri ca-
tion model with the mapping model for greater ef ciency.
More speci cally, our text-independent GMM-based SV sys-
tem is essentially the same as the ones described in [4, 3]. For
each speaker, we train a GMM by using the mapped features
from enrollment speech for MAP adaptation of the above-
mentioned channel-independent root GMM. The same root
GMM is then used as a universal background model (UBM).
During veri cation, the log likelihood scores of the mapped
features from the input speech are computed against the speaker
and root GMMs respectively, and their difference (i.e., the log
likelihood ratio score) is calculated and compared to a thresh-
old to decide whether to accept or reject the putative speaker
claim.

3. OUR APPROACH

3.1. Generalized Feature Transformation

In this paper, we propose to use the following piecewise lin-
ear transformation, which is borrowed from [15], for feature
mapping:

x = F(y; Θ(c)) = A(c)y +
K(c)∑
k=1

p(k|y, λ(c))b(c)
k , (4)

where A(c) is a nonsingularD×D matrix, b(c)
k is a D-dimensional

vector, and c denotes the corresponding channel condition to
which y belongs. For the convenience of notation, we use
Θ(c) = {A(c), b

(c)
k ; k = 1, . . . , K(c)} to denote the set of

trainable parameters of the above CD transformation function
F(y; Θ(c)). In order to make sure the transformation param-
eters can be well trained with suf cient data, we use a single
A(c) for each channel condition while allow the bias vector
b
(c)
k being Gaussian component dependent. Other options of

parameter tying are possible, but they are not explored further
in this study.

Given the set of training data Y = {Y1,Y2, . . . ,YC}, the
above transformation parameters Θ = {Θ(c), c = 1, . . . , C}
and the parameters of the CI root GMM λ can be estimated
by maximizing the following likelihood function

L(Θ, λ) =
∏

Yi∈Y
p(F(Yi; Θ)|λ) (5)

de ned on the training data Y . In the following subsection,
we describe in detail an approximate ML training procedure,
which again is adapted from the relevant procedure originally
proposed in [15] for robust ASR.

3.2. ML Training Procedure

Our ML training procedure is as follows:

Step 1: Initialization

First, the initial parameters of the root GMM λ are trained
from multi-channel training data Y . The initial values of
transformation matrices A(c) are set to be identity matrices
and the initial values of bias vectors b

(c)
k are set to be zero

vectors.

Step 2: Estimating feature transformation parameters Θ

Given the root GMM parameters λ, for each channel c, we es-
timate the channel-dependent feature transformation parame-
ters Θ̄c to increase the likelihood function L(Θ, λ). It can be
achieved by iterating the following two sub-steps NΘ times:

Step 2-1: Estimating A(c) by xing b
(c)
k

By xing b
(c)
k ’s, the updating formula for A(c) can be derived

in a similar way as CMLLR in [11]. Let’s use A
(c)
r to denote

the r-th row of A(c). A(c) is updated NA times as follows:

A(c)
r = α(c)

r p(c)
r G(c)−1

r + v(c)
r G(c)−1

r , (6)

where p
(c)
r is the cofactor row vector [c(c)

r1 . . . c
(c)
rD] with c

(c)
rl =

cof(A(c)
rl ), and

G(c)
r =

∑
i∈Ic

∑
t

∑
m

1
σ2

mr

ζit(m)yity
Tr
it , (7)

v(c)
r =

∑
i∈Ic

∑
t

∑
m

1
σ2

mr

ζit(m)(μmr − b
(c)
ktr)y

Tr
it , (8)

α(c)
r = − ε2

2ε1
±

√
ε2
2 + 4β(c)ε1

2ε1
, (9)

β(c) =
∑
i∈Ic

∑
t

∑
m

ζit(m) , (10)

ε1 = p(c)
r G(c)−1

r p(c)Tr
r , (11)

ε2 = p(c)
r G(c)−1

r v(c)Tr
r . (12)

The value of α
(c)
r is selected that maximizes

Qc = β(c) log |α(c)
r ε1 + ε2| − 1

2
α(c)2

r ε1 . (13)

In the above equation, Ic denotes the subset of the subscript
of training utterance Yi which belongs to the channel c, kt is
calculated by using Eq. (2), and

ζit(m) =
ωmN (A(c)yit + b

(c)
kt

; μm, Σm)
∑K

j=1 ωjN (A(c)yit + b
(c)
kt

; μj , Σj)
. (14)

Step 2-2: Estimating b
(c)
k by xing A(c)
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After A(c) is updated in the above step, b
(c)
k ’s are updated Nb

times as follows:

b
(c)
kd =

∑
i∈Ic

∑
t,m δkitζit(m)(μmd −A

(c)
d · yit)/σ2

md∑
i∈Ic

∑
t,m δkitζit(m)/σ2

md

,

(15)
where

δkit =

⎧⎨
⎩

1 if k = arg maxk′ p(k′|yit, λ
(c))

0 otherwise
(16)

and ζit(m) can be calculated by using Eq. (14).

Step 3: Estimating the Root GMM Parameters λ

Given the updated parameters of feature transformations Θ̄,
the training feature vectors are compensated using Eq. (4).
Using the compensated training feature vectors, Nλ EM iter-
ations are performed to re-estimate the root GMM parameters
λ̄, with an increase of the likelihood function L(Θ̄, λ).

Step 4: Repeat Step 2 and Step 3Ntotal times.

3.3. Discussions

Compared with the feature mapping approach in [3], our gen-
eralized feature transformation approach incurs additional com-
putational overhead only during the of ine training of trans-
formation parameters and the root GMM parameters, but not
for the enrollment of target speakers and scoring of testing
trials. In both approaches, the main online computational
costs come from the calculation of probability density func-
tion (PDF) values of each feature vector against Gaussian
components of CD-GMMs Λ(c). One of the advantages of
our approach is that we can use a much smaller value of K (c)

than that of K , therefore the online computational costs can
be reduced dramatically.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

We perform SV experiments on the 2005 NIST SRE corpus
[16] to evaluate the performance of different feature mapping
approaches. We focus on the task of “one two-channel con-
versation training” and “one two-channel conversation test-
ing” combination. The testing consists of 1,941 true trials
and 29,477 false trials.

In feature extraction, speech frames are obtained using
30ms window size and 20ms frame rate. Each frame of fea-
ture vector has 36 coef cients including 12 MFCCs, their
rst and second derivatives. An energy-based voice activ-

ity detection is performed to discard vectors from low-energy
frames. RASTA, utterance-based mean and variance normal-
ization are applied to the features to mitigate channel effects.

Table 1. Equal Error Rates (EERs) of different systems in
Fig. 1

Systems EER (in %) Relative EER Reduction (in %)
Baseline 12.46 -

FM 10.01 19.66
GFT-32 9.48 23.92
GFT-512 9.19 26.24

Two gender-dependent root GMMs are trained for female
and male speakers respectively. Each GMM consists of 512
Gaussian componentswith diagonal covariancematrices. They
are trained using the single-channel conversation training data
in the 2004 NIST SRE task [16]. The training data are recorded
from 170 male and 275 female speakers, and labeled with
recording devices including 3 types of phones (Cellular, Land-
line, Cordless) and 4 types of microphones (Speakerphone,
Headset, Ear-bud, Regular). There are a total of 12 channel
conditions in combination.

In the GMM-based baseline SV system, each target speaker’s
GMM is adapted from the root GMM of the same gender us-
ing the MAP adaptation. In the feature mapping (FM) ap-
proach of [3], for each gender, twelve CD-GMMs are adapted
from the correspondinggender-dependent root GMM. For our
generalized feature transformation (GFT) approach, we im-
plemented two systems with different numbers (namely 512
and 32) of Gaussian components for each gender-dependent
CD-GMM. For the joint ML training of the parameters of
feature transformations and the gender-dependent root GMM,
the relevant control parameters are set as Ntotal = 1, NΘ =
1, NA = 1, Nb = 1, and Nλ = 2. In both feature map-
ping based approaches, feature vectors are compensated by
the respective feature mapping functions before sent to the
GMM-based SV systems.

4.2. Experimental Results

Fig. 1 illustrates the DET curves of the GMM-based baseline
system, the FM-based system, and the two GFT-based sys-
tems (GFT-32 and GFT-512) with 32 and 512 mixture com-
ponents in CD-GMMs respectively. It is observed that the FM
approach improves the DET curve compared with the base-
line system. The two GFT-based systems yield similar DET
curves. It indicates that the number of mixture components
in the CD-GMMs can be set to relatively small values, which
helps save computational costs dramatically. Table 1 lists the
equal error rates (EERs) corresponding to the DET curves in
Fig. 1. It is observed that in comparison with the baseline sys-
tem, the FM-based system and the GFT-512 system achieve
relative EER reductions of 19.66% and 26.24% respectively.
In comparison with the FM-based system, the GFT-512 sys-
tem and the GFT-32 system achieve relative EER reductions
of 8.19% and 5.29% respectively.
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Fig. 1. DET curves of several SV systems on the 2005
NIST SRE task of “1-conversation train and 1-conversation
test”: GMM-based baseline system, feature mapping (FM)-
based system, generalized feature transformation based sys-
tems with 32 (GFT-32) and 512 (GFT-512) Gaussian mixture
components for each CD-GMM.

5. SUMMARY

In this paper, we have proposed a generalized feature trans-
formation approach to compensating for channel variation in
speaker veri cation (SV) applications. Channel-dependent
(CD) piecewise linear transformations are used for feature
compensation. CD transformation parameters are estimated
together with a channel-independent (CI) root Gaussian mix-
ture model (GMM) from training data with a variety of chan-
nel conditions by using a maximum likelihood criterion. Eval-
uation results on the 2005 NIST SRE task demonstrate that
our proposed approach outperforms a traditional feature map-
ping approach reported in [3].
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