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ABSTRACT
Maximum-Likelihood Linear Regression (MLLR) and Con-

strained MLLR (CMLLR) are two widely-used techniques for

speaker adaptation in large-vocabulary speech recognition systems.

Recently, using MLLR transforms as features for speaker recogni-

tion tasks has been proposed, achieving performance comparable to

that obtained with cepstral features. This paper describes a new fea-

ture extraction technique for speaker recognition based on CMLLR

speaker adaptation which avoids the use of transcripts. Modeling

is carried out through Support Vector Machines (SVM). Results

on the NIST Speaker Recognition Evaluation 2005 dataset are pro-

vided as well as in combination with two cepstral approaches such

as MFCC-GMM and MFCC-SVM, for which system performance

is improved by a 10% in Equal Error Rate relative terms.

Index Terms— speaker verification, CMLLR, GMM, SVM

1. INTRODUCTION
The success of current state-of-the-art speaker recognition sys-

tems is still mainly based on the use of short-term acoustic cepstral
features. Modeling is typically accomplished by means of Gaus-
sian Mixture Models (GMM) or discriminative approaches such as
Support Vector Machines (SVM), obtaining similar performance.
Since these acoustic features only cover a few tens of milliseconds
of context, longer time-span interaction and higher-level linguistic
cues are ignored. Some approaches have focused on characterizing
speaker speaking style to overcome this limitation. These typically
go further up the acoustic level and make use of phonetic-level or
word-level units. However, they rely on Automatic Speech Recog-
nition (ASR) system output accuracy.

Cepstral features result from the interaction among several
sources of information such as message, acoustic context, chan-
nel or speaker, being the latter one of the factors exhibiting the
lowest variability [1]. Therefore, compensating channel effects and
minimizing text-dependency become an important concern. Sev-
eral channel and session compensation techniques, such as Feature
Mapping [2], Factor Analysis [3] or Nuisance Attribute Projection
(NAP) [4] have been successfully applied in GMM or SVMmodel-
ing. Score normalization [5] can also alleviate some of these harm-
ful effects. As for message normalization, phone-conditioned and
word-specific cepstral models have been proposed.

In a different direction, [6] proposes modeling speakers us-
ing Maximum-Likelihood Linear Regression (MLLR) speaker
adaptation transforms estimated using a large-vocabulary speech
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recognition system. The primary goal here is to capture the
speaker-independent to speaker-dependent difference (in the form
of an affine transformation), with the hope of normalizing text-
dependency out. Nonetheless, it is again an approach which is
dependent on ASR output accuracy and it is furthermore language-
dependent.

Inspired by this latter approach, we present a technique aiming at
getting the benefits of MLLR speaker modeling while avoiding the
need for transcripts. The key idea is to consider the property in Con-
strained MLLR (CMLLR) that allows to apply the estimated trans-
form in the feature domain. When a single-class CMLLR transform
is estimated, Speaker Adaptive Training (SAT) [7] can be applied
in order to get a more speaker-dependent feature data set.

This paper is organized as follows: Section 2 introduces MLLR
and CMLLR and details the CMLLR feature extraction procedure
used in our approach. Section 3 describes all the components of the
speaker verification system as well as the evaluation task. Individ-
ual results for the CMLLR-SVM system as well as fusion results
on the NIST 2005 Speaker Recognition Evaluation are provided
and discussed in Section 4. Conclusions are presented in Section 5.

2. CMLLR IN SPEAKER RECOGNITION
CMLLR Background
Maximum-Likelihood Linear Regression [8, 9] is an adaptation

technique by which means, and optionally covariance matrices, of a
HMM model are transformed by an affine transformation aiming at
maximizing the likelihood function given new adaptation data and
the model, as

μ̂ = Aμ + b (1)

Σ̂ = HΣH
T

(2)

where μ is a mean vector in the model, Σ, its covariance matrix, μ̂
and Σ̂ the adapted mean and covariance matrix, respectively. (A,b)
is the affine transformation for mean adaptation, and H, the trans-
formation matrix for covariance adaptation. To find the optimal
parameters, Expectation Maximization (EM) is typically used [9]
in two steps, by estimating the covariance transformation H after
the mean transform given byA and b.

A variant of this approach, Constrained MLLR (CMLLR) [10],

forces the transformation to be the same for both μ̂ and Σ̂ as

μ̂ = Acμ − bc (3)

Σ̂ = AcΣAc

T
(4)

The estimation of the transform here is also achieved by means
of iterative optimization, typically EM.
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CMLLR allows the transform to be applied at the feature level
as

ôt = Ac

−1
ot + Ac

−1
bc (5)

where ot is the observation vector at time t. This can be par-
ticularly useful in SAT which is used in the feature extraction
technique presented in the next section.

CMLLR Feature Extraction
(C)MLLR can be used in speaker recognition systems to extract

features that are more specifically focused on speaker-related char-
acteristics than standard spectral envelope features. [6] proposes
using a large-vocabulary speech recognition system to derive sev-
eral class-dependent MLLR transforms the coefficients of which
are later stacked vector-wise and their concatenation used as a fea-
ture vector. Depending on the number of phonetic classes over
which the MLLR transforms are estimated on a HMM model, finer
or coarser text normalization can be achieved.
We propose a slightly different approach which consists of two

stages. As a first step, a GMM/UBM model is built upon back-
ground speaker cepstral features. Next, CMLLR transforms are
estimated for each speaker of interest by using this UBM and are
eventually rearranged as vectors to be modeled later.
To build the UBM model an iterative approach is followed. In

order not to be dependent on a speech recognition system we use a
GMM, instead of an HMM, which is trained on background speaker
cepstral features. This greatly simplifies the training procedure.
Only one CMLLR transform is estimated per speaker. At this point,
the transforms can be applied onto the same background speaker
features that were used to estimate the transforms, which results in
an improved feature set regarding speaker-dependency. The UBM
model can then be re-estimated by using these new features. This
process can be iterated several times until a convergence criterion
is accomplished. Fig. 1 illustrates the GMM/UBM estimation pro-
cess.

Train GMM/UBM on 

background speaker features

Estimate CMLLR transform 

for each background speaker

Stop criterion met?

Apply CMLLR transforms on 

background speaker features

yes

no

Figure 1: Block diagram for GMM/UBM re-estimation.

As a second step, last iteration’s UBM model is used to estimate
CMLLR transforms for each speaker for which we want to perform
feature extraction. Each of the transform matrices is then stacked
either column-wise or row-wise, optionally adding the offset vector
b. This results in one high-dimensional feature per speaker which
is specially well-suited for SVM modeling.

The main advantage of this technique over [6] is that the train-
ing procedure is not transcript-dependent or language-dependent
while still capturing differences between speaker-independent and
speaker-dependent acoustic features. On the other side, since a
GMM is used to estimate the transform the resulting transform is
less precise and probably more dependent on the message.

A similar procedure, which shares certain similarities with
the GMM Supervector (GSV) approach [11], can be also de-
rived for Maximum A Posteriori (MAP) adaptation [12]. Here, a
GMM/UBM model and a MAP-adapted model for the speaker of
interest are considered. Speaker-related features are obtained by
taking the difference of mean supervectors of the two models in-
stead of just the MAP-adapted mean supervector. This procedure
is analogous to the CMLLR approach although correlation between
feature components is not exploited.

3. EXPERIMENTAL SETUP
Task and evaluation data
Speaker verification experiments are conducted on con-

versational telephone speech. The data is provided for the
one-conversation two-channel condition task of the NIST 2005
evaluation1 . Given a speech segment in a around 5-minute long
conversation, the goal is to decide whether this segment is spoken
by the target speaker or not. For each target model (274 male / 372
female), a speech segment in an around 5-minute long conversation
is available for model training. Overall, 2429 test segments (1074
male and 1355 female) need to be scored against roughly 10
gender-matching impostors and against the true speaker. The
gender of each target speaker is known.

Cepstral Feature Extraction
All systems share the same cepstral feature extraction setup.

Features are extracted from the speech signal every 10ms using a
30ms window, and estimated on a 0-3.8kHz bandwidth. Feature
vectors consist of 15 MEL-PLP cepstrum coefficients, 15 Δ

coefficients plus Δ energy, and 15 ΔΔ coefficients plus ΔΔ

energy (47-D features). Speech Activity Detection (SAD) is
performed using the voicing level extracted using the Snack
Sound Toolkit2. Speech frames with invalid voicing values are
dropped. Channel compensation for GSM, CDMA, TDMA,
landline-carbon and landline-electret data is performed for both
genders using feature mapping [2]. Speech segments from test
speakers from NIST SRE 1997 to 2002 evaluations (24769 speech
segments) are chosen for model training. Around 6-hour speech
data is used to train each gender-dependent channel model. After
feature mapping, feature warping [13] is performed over a sliding
window of about 3 seconds to reshape the cepstral histogram into
a Gaussian distribution.

MFCC-GMM system
The MFCC-GMM system [14] is based on Gaussian Mixture

Models (GMM) with diagonal covariance matrices trained using
MAP adaptation [12]. For speaker modeling, GMMs are trained
by MAP adaptation of the Gaussian means of the corresponding
gender-dependent UBM using 3 iterations of the EM algorithm.
Each of the two gender-dependent UBMs is a 1536-mixture

1The NIST year 2005 speaker recognition evaluation plan,
http://www.nist.gov/speech/tests/spk/2005/
2The Snack Sound Toolkit, http://www.speech.kth.se/snack/.
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GMM, built by merging three GMMs, each with 512 Gaussians
trained on cellular, landline-electret and landline-carbon data.
Around 60-hour speech data is used to train each gender-dependent
channel-specific 512-mixture GMM. The training data is chosen
from target speakers in NIST SRE 97,98,99,00,01 and 03 eval-
uations and test speakers in NIST SRE03 evaluation (for a total
of 9041 speech segments). Score normalization is performed
using T-norm [5] on 500 speech segments (250 males and 250
females) from the Fisher corpus3. Speech segments in this corpus
are 10-minute long telephone conversation excerpts. The first 5
minutes of each segment are extracted for score normalization.

MFCC-SVM system
The MFCC-SVM system is based on SVM modeling and

several steps of feature extraction that expand the discriminative
power of the base cepstral features. Polynomial feature extraction
expands the MEL-PLP features into high-dimensional feature
vectors through a third order monomial expansion for each frame.
The resulting features are variance normalized and averaged
over the whole segment to obtain a single 20824-D vector. The
dimension of this speaker-specific vector is reduced via Kernel
Principal Component Analysis (KPCA) [15] using a 2nd order
cumulative homogeneous polynomial kernel, resulting in one
3197-D feature vector per speaker. An affine transform maps each
feature component into the range [-1/3197,1/3197] so that only
normalized dot products are processed by the SVM. The minimum
and maximum values are taken from the impostor speaker set,
which is chosen from target speakers in NIST SRE 99,00,01,02
and 04 evaluations (3198 speakers). SVM training is performed
with a linear kernel using SVMTorch 4 from IDIAP.

CMLLR-SVM system
The CMLLR-SVM system uses the feature extraction scheme

described in Section 2. The impostor speakers are used as
background speaker set, and split into male and female genders
to train two gender-dependent GMM/UBM models. The number
of iterations for GMM/UBM estimation was fixed to 2, which
exhibited the best performance on the evaluation. The CMLLR
transforms result in 2256-D (47x47 + 47, including b) feature
vectors, after stacking their coefficients. These are min-max
normalized in the range [-1/2256,1/2256] and modeled exactly in
the same way as in the MFCC-SVM system.

Score-level fusion
Each of the MFCC-GMM, the MFCC-SVM and CMLLR-SVM

systems consists of a forward and a backward sub-systems [16].
The forward sub-systems use a conventional approach in which
test speech is compared to the speaker models trained on training
speech. In the backward sub-systems, training speech is compared
to the speaker models trained on test speech. Therefore, 6 scores
are fused for the all-combination system.
Three-fold cross-validation is adopted in our performance

evaluation. Here, the evaluation data is split into three independent
balanced sets. Each set of scores is zero-mean and unit-variance
normalized based on the statistics of the other two sets. Finally, an
uniform weighting average score is computed for each trial.

3Fisher Corpus, LDC Catalog, http://www.ldc.upenn.edu/Catalog
4SVMTorch: a Support Vector Machine for Large-Scale Regression and

Classification Problems - http://www.idiap.ch/learning/SVMTorch.html

Performance Measure
A speaker detection system is subject to two kinds of errors,

i.e. missed detections and false alarms. The primary perfor-
mance measure for the NIST speaker detection task is the Detec-
tion Cost Function (DCF) defined as a weighted sum of both er-
ror probabilities, the normalized cost taking the following form
CNorm = PMiss + 9.9 × PF alseAlarm. For all results, we report
the Minimal DCF (MDC) value obtained a posteriori for the best
possible detection threshold. However, this operating point favors
false alarms, so the Equal Error Rate (EER) is also provided as an
alternative performance measure. We use Detection Error Tradeoff
(DET) curves as well to evaluate system behaviour in the full range
of operating points.

4. RESULTS
The behaviour of the CMLLR-SVM system is first assessed as a

function of the number of iterations in the GMM/UBM model re-
estimation. Table 1 shows MDC and EER results for the first five
iterations. MDC exhibits a decreasing trend as the number of itera-
tions grows. EER follows the same overall behaviour despite some
fluctuation on the score. It is clear that most of the performance im-
provement is achieved at the second iteration (5% in MDC and 8%
in EER in relative terms). Further iterations obtain just a marginal
gain in performance at the expense of much higher computational
cost. This makes CMLLR-SVM 2 it. the candidate system to be
fused with the other individual systems.

System MDC (x100) EER (%)

CMLLR-SVM 1 it. 0.395 8.97
CMLLR-SVM 2 it. 0.372 8.19
CMLLR-SVM 3 it. 0.372 8.31
CMLLR-SVM 4 it. 0.365 8.23
CMLLR-SVM 5 it. 0.369 8.10

Table 1: MDC and EER for several iterations of UBM
re-estimation in the forward CMLLR-SVM system.

Table 2 shows forward+backward fusion results for each indi-
vidual system, MFCC-GMM (a), MFCC-SVM (b) and CMLLR-
SVM (c), and the baseline system (a+b) and all-combination sys-
tem (a+b+c). CMLLR-SVM is competitive with the other indi-
vidual systems (a and b) in terms of EER. Both MFCC-GMM
and MFCC-SVM significantly outperform CMLLR-SVM in MDC,
though. This trend is confirmed after fusion of all individual sys-
tems. Including CMLLR-SVM in the fusion brings about a 10%
relative improvement over the baseline in EER, but leaves MDC
at the same level. Fig. 2(a) shows DET curves for the individ-
ual systems. MFCC-SVM outperforms the two other systems, and
CMLLR-SVM and MFCC-GMM complement each other, depend-
ing on the DET curve region. Fig. 2(b) shows DET curves for the
baseline and all-combination systems. The all-combination sys-
tem consistently outperforms the baseline system along the whole
curve. This improvement is small at the MDC operating point and
gets larger for lower miss probability values, for instance, a 10%
relative improvement in EER.

5. CONCLUSIONS
We presented a new feature extraction approach for speaker

recognition based on the CMLLR speaker adaptation technique that
doesn’t depend on ASR transcripts. We showed that a competitive
system can be built by using CMLLR transforms as features and

IV  55



30

20

10

5

2

0.5
302010520.5

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

False Alarms probability (in %)

MFCC−GMM
MFCC−SVM

CMLLR−SVM

30

20

10

5

2

0.5
302010520.5

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

False Alarms probability (in %)

All−Combination
Baseline

Figure 2: DET curve for the individual systems (left, a): MFCC-GMM, MFCC-SVM and CMLLR-SVM and for the baseline and
all-combination systems (right, b). MDC operating points are shown as dots.

System MDC (x100) EER (%)

MFCC-GMM (a) 0.330 8.61
MFCC-SVM (b) 0.277 7.41
CMLLR-SVM (c) 0.370 8.15
Baseline (a+b) 0.266 7.11

All-combination (a+b+c) 0.260 6.40

Table 2: MDC and EER for the individual, baseline and
all-combination systems.

SVM modeling. When this approach is combined with a MFCC-
GMM and a MFCC-SVM systems performance is significantly im-
proved. Despite the simplicity of the fusion method, a 10% relative
improvement in EER was achieved.
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