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ABSTRACT
One particularly difficult challenge for cross-channel speaker 

verification is the auxiliary microphone task introduced in the 

2005 and 2006 NIST Speaker Recognition Evaluations, where 

training uses telephone speech and verification uses speech from 

multiple auxiliary microphones. This paper presents two 

approaches to compensate for the effects of auxiliary microphones 

on the speech signal. The first compensation method mitigates 

session effects through Latent Factor Analysis (LFA) and 

Nuisance Attribute Projection (NAP).  The second approach 

operates directly on the recorded signal with noise reduction 

techniques. Results are presented that show a reduction in the 

performance gap between telephone and auxiliary microphone 

data.

Index Terms— Speaker recognition, Speech enhancement, 

Microphones, Acoustic noise

1. INTRODUCTION

One of the enduring challenges for automatic speaker verification 

is dealing with variability between training and testing speech. 

This variability arises from several intrinsic (speaker related) and 

extrinsic (audio quality related) factors, but many of the dominant 

and identifiable causes of train/test mismatch are extrinsic factors 

due to changes in the microphone used, and the acoustic 

environment in which the speech was recorded. Over the past 12 

years, the NIST speaker recognition evaluations (SREs) have 

focused research effort on addressing aspects of the mismatch 

challenge by using telephone speech collected from a wide 

sampling of telephone instruments (landline, cellular, carbon-

button, electret, etc.) from many different acoustic environments 

(indoors, outdoors, etc) and by designing train and test scenarios 

using speakers’ speech recorded from different telephone numbers 

(and thus presumably different telephone instruments and 

locations). This emphasis has produced new compensation 

techniques in the feature, model and score domains, that have 

steadily driven down the error rates under mismatched telephone 

speech conditions. To further raise the bar on this challenge and to 

address new application domains, NIST introduced an auxiliary 

microphone (auxmic) task in the 2005 and 2006 SRE that provided 

a new cross-channel test scenario using multiple, non-telephony 

microphones.

In the auxmic task, the training speech for a speaker is 

collected from a single telephone number, but the test speech 

comes from one of eight different microphones. Such a scenario 
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could be encountered in applications needing portability of speaker 

models across multiple recording domains, for example, in a 

forensic voice-comparison of a telephone threat to a suspect 

recorded with a room microphone. The mismatch in the auxmic 

task arises not only from the use of different microphones, but also 

from effects on the speech induced by the microphone placement 

and the recording room characteristics, such as reduced SNR and 

reverberation. Thus compensation techniques that address both 

microphone and noise mismatch are important for success on this 

task.

In this paper, we present an analysis of results from the MIT-

LL systems applied to the 2006 NIST SRE auxmic task. We show 

how GMM and SVM microphone/session compensation 

techniques developed for telephone speech can be successfully 

applied to the auxmic task. We further demonstrate that applying 

speech enhancement algorithms for noise and tone removal to pre-

process the auxmic data can greatly improve speaker verification 

performance.

2. AUXILIARY MICROPHONE DATA 

The data used in the auxmic task comes from the cross-channel 

recordings collected as part of the Mixer telephone corpus by LDC 

[1]. The goal of the cross channel collection was to record one side 

of a series of Mixer telephone conversations on a variety of 

microphones. The microphones were chosen to represent certain 

target settings such as the microphones used in courtrooms, 

interview rooms, and cellular telephones. Participants placed calls 

to the Mixer robot operator while being recorded simultaneously 

on the cross channel recorder. Table 1 lists the eight microphones 

used in the auxmic task.  

Table 1: Microphone types in the auxiliary microphone task. 

Num. Description Microphone

1 Studio mic Audio Technica AT3035 Cardioid Condenser 

2 Courtroom mic  Shure MX418S Supercardioid Gooseneck Mic 

3 Distant mic Audio Technica Pro 45 Cardioid Condenser 

Hanging Mic 

4 Microcassette

mic 

Olympus Pearlcorder S725 

5 Ear miniboom 

mic 

Jabra® EarWrap Headset Radio Shack #43-

1914

6 Cell earbud  Motorola Earbud Handsfree (SYN8390) 

7 Conference 

room mic  

Crown SoundGrabber II pressure-zone mic 

(PZM)

8 PC-style stand Radio Shack Desktop Mic with Noise 

Canceling #33-3031 

During recording, the participant is wearing microphones 5 and 

6, microphones 1, 2, 4, 7, and 8 are placed on a table in front of the 

subject, and microphone 3 is placed high and across the room from 
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the subject. The auxmic data was collected at three locations: ISIP 

(Mississippi), LDC (Pennsylvania) and ICSI (California). Some 

effort was made to use similar size rooms and microphone 

placements at the three sites, but this was not rigorously enforced 

(e.g., no control was made for reflecting surfaces in the rooms or 

noise sources, such as air vents). As shown later, the distant 

microphone (3) is the most affected by differences in room 

acoustics.

 There were 8 speakers recorded at ISIP, 109 at LDC, and 61 at 

ICSI. The 2005 SRE auxmic data came from the 8 ISIP speakers 

and 89 LDC speakers, while the 2006 SRE auxmic data came from 

20 LDC speakers and the 61 ICSI speakers.   

Human analysis of the auxiliary microphone data reveals two 

main effects 1) distortions due to the microphone type, and 2) the 

presence of tones and broadband noise. Session compensation will 

try to address the first of these effects while noise reduction will 

address the later. 

3. VERIFICATION SYSTEMS 

For this task, state-of-the-art verification systems using Gaussian 

mixture models with universal background model (GMM-UBM) 

[2] and support vector machines using a generalized linear 

discriminant sequence kernel (SVM-GLDS) [3] developed at MIT-

LL were applied. Both systems also used new channel/session 

compensation techniques of the models developed to help mitigate 

mismatch degradations for telephone speech. 

3.1 GMM-UBM

In the GMM-UBM system, a speaker model is created by MAP 

adaptation from a speaker-independent UBM. The UBM was 

trained using Switchboard II and SRE-04 data. A standard MFCC 

front-end is used, producing 19 MFCCs extracted over the 

telephone bandwidth (300-3100 Hz) with 19 delta MFCCs 

appended. The features are processed with RASTA filtering and 

have mean and variance normalization applied to minimize session 

effects. 

To compensate for session effects in the model domain, a form 

of Latent Factor Analysis (LFA) based directly on the work 

presented in [4] and related to initial work done by [5, 6] is 

applied. The session variability is modeled as a low-dimensional 

additive normal bias, x(s) to the model means:  

)()()( sUxsmsmi
                           (1) 

The drawback in using the auxiliary microphone data is the 

limited number of speakers in the SRE 2005 auxmic data. 

Fortunately the 98 speakers also participated in the SRE 2005 

telephony corpus collection, so additional 2-5 telephone sides 

could be added to each speaker’s existing 8 auxmic sessions.  
where m

i
(s) and m(s) are “supervectors” of stacked GMM mean 

vectors. The m
i
(s) is the supervector from the i-th session of talker 

s whereas the m(s) is the session independent term of talker s.

Training of the low-rank session loading matrix U is generated 

directly without iteration as described in [7]. The selection of data 

used to train the loading matrix for the auxiliary microphone task 

is described in following sections. 

Compensation in the score domain was done by applying Z-

norm followed by T-norm. The Z-norm imposter test messages 

were taken from the Switchboard II phase 1-5 corpora and the T-

norm speakers were drawn from the SRE04 corpus (364 female 

and 243 male models). 

3.2 SVM-GLDS

The SVM-GLDS system uses a polynomial-based kernel with a 

degree 3 basis of monomials. Background data used in the SVM 

training were obtained from a subset of the English portion of the 

Fisher corpus. New in the SRE06 MIT-LL system, two front-ends 

were used. The first was the same MFCC front-end as used for the 

GMM-UBM system. The second was an LPCC front-end which 

generated 18 LPCCs plus deltas from 12 LP coefficients.  Speaker 

models and scores are calculated independently for both feature 

sets, and the resulting scores are fused with a linear combination.  

The SVM-GLDS system with NAP relies on the kernel 

computation between expansion vectors of two talkers, (na and nb):

)()()( btbba n P bn b,nnK                            (2) 

where P is the NAP projection [8] and b(·) is the SVM polynomial 

expansion. The NAP projection matrix P is related to the LFA 

session loading matrix U see — [9]. This similarity in computation 

allows us to use the same data with the same constraints in training 

the P and U matrices. This will be expounded upon in Section 4.

NAP projection was applied in training to the backgrounds and 

speaker data. SVM models were obtained using the GLDS kernel 

and SVM Light. Model compaction was used to reduce the size of 

models.

For scoring, we computed an inner product between the 

average expansion and the SVM model. T-norm was also 

performed drawing from SRE04 cohorts. 

4. AUXMIC SESSION COMPENSATION  

The first approach is to mitigate the effects of auxiliary 

microphone on the testing channel by utilizing subspace modeling-

modeling LFA and NAP. Both of these techniques compensate for 

unwanted variation through attenuation of that information.  LFA 

models the variation with low-dimensional normally distributed 

latent factors, whereas NAP models variation in extremely high 

dimensions and excises out “nuisance” dimensions. In both 

techniques, information about what types of variability to suppress 

is obtained through the data used to estimate the sample covariance 

matrices (U and P).  

The constraints on the training data for the LFA session 

loading matrix and NAP projection matrix were: 

1) Tel: Session utterances coming only from telephone 

channel.

2) Pool: Session utterances drawn from the auxiliary 

microphone and telephone data are ‘pooled’ together. 

5. NOISE REDUCTION 

Some of the auxmic data, most notably channel 3, was 

contaminated by both tones and wideband noise. To combat this 

contamination two noise reduction techniques, steady tone removal 

and wideband noise reduction, were applied in series as 

preprocessor steps to MFCC and LPCC features processing.  

5.1 Steady Tone Suppression 

Current methods of steady tone suppression using comb filters or 

short-time analysis/synthesis are inadequate for the closely spaced 

and inharmonic tones with low SNR observed in the data.  The 

method we apply in this paper strives to address the limitations of 

other methods by using a very long analysis window to exploit the 
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coherent integration of the Fourier transform  [10].  An important 

aspect of this tone reduction method is that it introduces little 

amplitude and phase distortion in the surrounding signal, thus 

preserving components of the signal important for recognition by 

humans or machines. 

The steps in the technique, which provides high frequency 

resolution and robustness, are as follows. First, the audio input is 

windowed using an 8 second long hamming window, and its 

Fourier transform is computed. Next, the magnitude spectrum is 

whitened by subtracting a smoothed version of the original. Tones 

are detected by applying a threshold to the whitened spectrum and 

at each tone a Gaussian shaped template with a 2-Hz bandwidth is 

subtracted from the magnitude. The resulting spectrum is inverted 

and a complete speech signal estimate is obtained through an 

overlap-and-add reconstruction with neighboring 8-second 

segments. 

5.2 Wideband Noise Reduction 

Standard noise suppression algorithms can distort dynamic speech-

signal characteristics, such as transient plosives, formant motion, 

and vowel onsets which may be essential in contributing to 

distinguishing speech and speaker characteristics. In this paper, we 

use an adaptive Wiener-filter approach directed toward preserving 

the dynamic components of a speech signal while effectively 

reducing noise [11, 12]. A distinguishing component of the 

approach is an estimate of the speech spectrum, required by the 

Wiener filter, using a measure of spectral change that allows 

robust and rapid adaptation of the filter to speech events. The 

approach reduces speech distortion in Wiener filtering by making 

the time constant that controls smoothing of the speech spectrum a 

time-varying parameter. In particular, the time constant is selected 

so that little temporal smoothing is introduced in rapidly-changing 

regions and increased smoothing is performed in more stationary 

regions. Our measure of spectral change is provided by a 

dynamically-smoothed spectral derivative. The approach is 

consistent with temporally shaping noise to fall within certain 

regions of least perceptual sensitivity [11, 12]. 

The framework for implementing the suppression algorithm is 

an overlap-add approach, with the use of a very short 4-ms 

triangular analysis window and a 1-ms frame interval. Without 

suppression, the analysis/synthesis is an identity, while being 

consistent with sufficient temporal resolution to maintain 

discrimination of dynamic speech components.  

6. EXPERIMENTS AND ANALYSIS 

In this section, we present an analysis of results from the 2006 

SRE auxmic task using the above verification systems and 

compensation techniques. For these experiments, we focus on the 

one conversation training condition, in which speaker models are 

trained using one side of a telephone conversation (approximately 

2.5 minutes of speech) and tested against a conversation side 

recorded on one of the auxiliary microphones. Performance is 

assessed in terms of equal error rates (EERs) and minimum 

decision cost functions (minDCF). See the 2006 SRE evaluation 

plan at http://www.nist.gov/speech/tests/spk/2006/sre-06_evalplan-

v9.pdf for details. 

Table 2 summarizes overall performance on the auxmic task 

for the GMM-UBM and SVM-GLDS systems using various forms 

of session compensation and with noise reduction applied to the 

auxmic speech. Comparison with results in the “telephone 

unprocessed” (telephone sides from the auxmic sessions) column 

shows that the auxmic data indeed is more challenging than the 

telephone data. It is also clear from the results that session 

compensation and noise reduction provide large gains in 

performance both separately and jointly. 

Table 2: Summary of overall auxmic performance (EER in % / 

DCF in %) for the GMM-UBM and SVM-GLDS systems with 

and without session\ compensations and noise reduction.  

Classifier Session

Compensation 

Telephone 

Unprocessed  

Auxmic 

Unprocessed 

Auxmic  

NR

none - 9.89 / 3.97 7.74 / 3.41 

LFA-tel 3.75 / 1.48 9.07 / 3.69 6.94 / 3.09GMM 

LFA-pool - 5.63 / 2.37 4.60 / 2.17

none - 17.74 / 6.21 14.24 / 5.26 

NAP-tel 2.88 / 1.29 9.70 / 3.81 6.78 / 2.76SVM

NAP-pool - 7.20 / 2.82 5.71 / 2.29

We next analyze results broken out by microphone and 

collection site. As discussed in the introduction, the degradations 

introduced by a microphone are a function not only of the 

transducer but also of the microphone placement and room 

acoustics.  In Figure 1, we plot the estimated SNR for speech from 

the eight microphones for the two collection sites used in the 2006 

SRE auxmic data. This plot provides both a rough ranking of noise 

degradations per microphone (a proxy for placement) and the 

correlation of microphone SNRs per site (a proxy for inter-site 

consistency). Based on placement, the low SNR of microphone 3 

for both sites matches expectations. Microphone 5, however, 

appears to be abnormal at the LDC site (It was later found that this 

microphone had a battery failure which caused extreme under 

recording). In general the SNRs were correlated between sites, but 

lower at LDC.
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Figure 1: Scatter plot of SNR for auxmic microphones for LDC 

and ICSI collection sites used for 2006 SRE auxmic data.

The EER per microphone broken out by site is shown in Figure

2 for the GMM LFA-pool system without noise reduction. We can 

observe some limited correlation of performance with SNR. This 

figure demonstrates the microphone-dependent variability at a 

single site and the site-dependent variability of a single 

microphone arising from operator error (e.g., 5) and room 

acoustics and/or placement (e.g., 3 and 4). 
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Figure 2: Collection site breakout of EER versus microphone 

for GMM-LFA-pooled system without noise reduction 

The microphone-dependent performance effect of the noise 

reduction is shown in Figure 3 for the SVM with NAP-pool. These 

results combine auxmic data from the sites. A similar profile is 

seen for the GMM system when using LFA-pool compensation. As 

expected the noise reduction has the largest benefit on the distant 

microphone (3) but, also of importance, it is benign to those 

microphones without noise problems. The noise reduction appears 

to be most beneficial for SNRs < 20dB. 
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Figure 3: Per-microphone EER of the SVM with NAP-pool 

using unprocessed and noise reduced auxmic speech. 

Figure 4 shows the microphone-dependent performance effects 

of session compensations for the GMM-LFA system after noise 

reduction is applied. Here we see the additional improvements in 

using pooled data to train the LFA compensation which reduces 

the ERR for all microphones, most notably for microphones 3 and 

4.

Lastly, linear combination fusion of GMM and SVM systems 

with pooled session compensation and noise reduction pre-

processing further reduces the error rate on the 2006 SRE auxmic 

task to EER= 4.04% and minDCF*100= 1.69. 

7. CONCLUSIONS

In this paper we presented systems and compensations 

techniques for robust verification under challenging cross-channel 

conditions in the auxiliary microphone task of the NIST 2006 

SRE. To deal with transducer mismatch, we demonstrated that 

session compensation techniques of LFA and NAP can be greatly 

improved by utilizing pooled data from telephone and auxiliary 

microphone data. To address mismatch from additive tones and 

broadband noise in the microphone speech, we demonstrated that 

pre-processing the audio with tone and noise reduction algorithms 

significantly improves accuracy for low SNR audio with no loss 

for high SNR audio. These compensations were shown to work 

very well individually and even better jointly for both a GMM and 

SVM based verifier. Results showed relative reductions of 55-67% 

in EER.
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Figure 4: Per-microphone EER of the GMM with different 

session compensations using noise reduced auxmic speech. 
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