DISCRIMINATIVE TRAINING OF DECODING GRAPHS FOR LARGE VOCABULARY
CONTINUOUS SPEECH RECOGNITION

Hong-Kwang Jeff Kuo, Brian Kingsbury

IBM T.J. Watson Research Center,
Yorktown Heights, NY 10598
{hkuo,bedk } @us.ibm.com

ABSTRACT

Finite-state decoding graphs integrate the decision trees, pronuncia-
tion model and language model for speech recognition into a unified
representation of the search space. We explore discriminative train-
ing of the transition weights in the decoding graph in the context
of large vocabulary speech recognition. In preliminary experiments
on the RT-03 English Broadcast News evaluation set, the word er-
ror rate was reduced by about 5.7% relative, from 23.0% to 21.7%.
We discuss how this method is particularly applicable to low-latency
and low-resource applications such as real-time closed captioning of
broadcast news and interactive speech-to-speech translation.

Index Terms— Discriminative training, Finite-state decoding
graph, Language model, Pronunciation model, Low-resource speech
recognition.

1. INTRODUCTION

In recent years, it has become popular to use an integrated finite-
state decoding graph as a pre-compiled search space for efficient de-
coding for large-vocabulary speech recognition [1]. This decoding
graph can be thought of as a finite-state machine that results from
the composition of a few weighted finite-state transducers (WFSTs)
that incorporate the statistical language model (LM), the pronuncia-
tion model, and the decision trees that expand context-independent
phones to context-dependent units. With appropriate optimizations,
the decoding graph can be made efficient for speech decoding.

Discriminative training of the language model for speech recog-
nition has become an active area of research [2, 3, 4, 5, 6]. The moti-
vation is clear: instead of using maximum likelihood to estimate the
LM probabilities, the LM parameters are trained on speech data and
corresponding transcripts to minimize the actual speech recognition
error rate. In the framework of speech recognizers using an inte-
grated finite-state decoding graph, one can either discriminatively
train the LM before constructing the decoding graph or, as recently
proposed [7], one can create the decoding graph and then discrimi-
natively train the transition weights in the graph.

Potential advantages of training the decoding graph instead of
just the language model include the following. First, the decoding
graph combines several models (the language model, pronunciation
model, decision trees, silence insertion penalty, etc.) and in some
cases it would be better to perform end-to-end optimization of the
combined model rather than just one model separately. In addition,
it is possible to learn LM context dependent pronunciation probabil-
ities, e.g. “for the record” vs. “need to record.”’

In this paper, we extend previous work on discriminative graph
training [7] to large vocabulary continuous speech recognition, using

1-4244-0728-1/07/$20.00 ©2007 IEEE

IV -45

Geoffrey Zweig

Microsoft Research,
Redmond, WA
gzweig@microsoft.com

context-dependent acoustic models instead of context-independent
models. All transition weights in the decoding graph are adjustable
except for zero-cost self loops. We also describe methods using FST
tools to make it possible to perform discriminative graph training on
a large decoding graph and a large amount of training data.

2. DISCRIMINATIVE TRAINING

In this section, we describe how the transition weights of an inte-
grated finite-state decoding graph are adjusted discriminatively to
improve the score separation of the correct word sequence from the
competing word sequence hypothesis, using the Minimum Classifi-
cation Error (MCE) criterion [8, 9]. The treatment is similar to [7],
with one difference being that we use context-dependent acoustic
models, so the sequences are context-dependent state sequences.

Note that the integrated decoding graph (call it () is essentially
a classical Hidden Markov Model (HMM) with two sets of parame-
ters: the acoustic model A, consisting of the Gaussian densities in the
HMM states, and the transition weights A which specify the costs
of transitions between the HMM states. The decoding graph can be
constructed according to procedures described in [1, 10], which in-
volve FST composition and optimization of the the language model,
pronunciation model, and decision trees of the context-dependent
HMM. The language model is a back-off n-gram language model,
trained using the conventional maximum likelihood criterion and ap-
propriate smoothing such as modified Kneser-Ney. The pronuncia-
tion probabilities may be arbitrarily set to uniform or may be based
on estimates from aligning pronunciation variants (“lexemes”) to the
speech training data.

Given an acoustic observation sequence X = x1,x2,...,Tt
representing the speech signal and a word sequence W, the condi-
tional likelihood of X is approximated as the score of the best path
S = 651,852,...,5: through G for input X and output W. We de-
fine a discriminant function to be this score, which is a weighted
combination of the sum of acoustic log likelihoods a(X, W, S; A)
and transition weights b(W, S; A):

gX, W, S AN =¢ (X, W, 5 4) +b(W,5;4), (1)

where € is the acoustic model weight. Note that the path S is
a sequence of hidden states that actually specify a lexeme (spe-
cific pronunciation variant of a word) sequence as well as a leaf
(context-dependent HMM state) sequence. The sum of the transition
weights of the path includes the sum of the language and pronuncia-
tion model log probabilities of the associated lexeme sequence (plus
other parameters such as word or silence insertion penalties, etc.).

ICASSP 2007



A common strategy for a speech recognizer is to search for the
word sequence Wi with the largest value for this function:

Wi = argmax (X, W, S; A, A). )
w,S

Let Wy be the known correct word sequence. The misclassifica-
tion function is defined to be the difference between the discriminant
function and the anti-discriminant function, which is normally an L,
norm weighted combination of the N-best competing hypotheses [3].
For simplicity, we follow [7] and just consider the decoded (single
best) hypothesis W;. Let the misclassification function be

d(X;A A = —g(X, Wo, So; A A) + g(X, W, S1; A Q).
3)
When this misclassification function is strictly positive, a sen-
tence recognition error has been made. To formulate an error func-
tion appropriate for gradient descent optimization, a smooth, differ-
entiable function ranging from 0 to 1 such as the sigmoid function is
chosen to be the class loss function for a specific utterance X;:

1

Li(Xi) = Ud(X0)) = 1+ exp(—ed(X;) +¢€)’

“4)

where € and € are constants which control the slope and the shift of
the sigmoid function, respectively. Our objective is to minimize the
loss function over all utterances in the training corpus:

I(X) = Zzi(xi). ®)

The transition-weight parameters can be adjusted iteratively
(with step size €) to minimize the objective function using the fol-
lowing update equation:

DNyr =N — eVIX; A, ). (6)
The gradient of the loss function is

Al 0d(Xi; AN
—~9d;  0A

VIX; A, &) = %

where the first term is the slope associated with the sigmoid class-
loss function and is given by:
ol;
ad;

el(d;)(1 = 1U(dy)). ®)

If we regard Aas a vector of transition weights s;, to compute
W, we can take the partial derivatives with respect to each
s;. Using the definition of d in Equation 3 and after working out the
mathematics, we get:

w = _[(W0781)+I(W178j)7 9
S;
where I(W, s;) denotes the number of times the transition S; is
taken in the best aligned path of X; to the word sequence W.

For each utterance in the training data, the algorithm is count-
ing the transitions for the correct string and the decoded hypothesis.
Transitions for the correct string increase the corresponding transi-
tion weights, while those for the decoded string decrease the weights.
The amount of increase or decrease is proportional to the step size e,
the value of the slope of the sigmoid function and the difference in
the number of times the transition appears. The slope of the sigmoid
function is close to 0 for very large positive d, so little adjustment is

made for a sentence for which the total score of the correct string is
much worse than the score of the competing string. This decreases
the effect of outliers, for example of utterances whose transcripts are
erroneous. Notice that the only dependence on the acoustic scores
(more specifically, the difference in the total path scores) in the equa-
tions is in the slope gclii , which determines how much influence a
particular training sample has in updating the parameters.

With gradient descent optimization, there is a choice of batch
mode, which collects the statistics over all the training data before
making an update to the model, or online mode, where the model
is updated after processing each training sample and typically the
sample order is randomized. Although online mode may result in
faster convergence, batch mode has the advantage of allowing for
parallelism in collecting statistics of the training data. In this paper,
we use batch mode training.

3. FST IMPLEMENTATION

In this section, we describe a simple and elegant method for im-
plementing discriminative training for large vocabulary decoding
graphs using weighted finite-state transducers. We use an internal
IBM FSM toolkit [11], with functionality similar to the publicly
available AT&T toolkit [12].

It is easy to instrument a Viterbi decoder to count state tran-
sitions (just count on the backtrace). However, it is not obvious
how the reference aligns to the decoding graph, especially because
of LM backoff arcs. Therefore, we treat both cases in the same way:
we produce leaf sequences for the reference and decoded word se-
quences, and then use a decoder-derived transducer that reads leaves
and outputs state transitions to do the counting.

The algorithm consists of the following steps:

1. For each sentence in the training data, find the reference leaf
sequence by aligning the reference transcript to the speech
data. Encode the leaf sequence as an FSM and attach a
dummy arc to store the acoustic score.

2. Decode training speech data using the decoding graph. For
each sentence, find the decoded leaf sequence. Construct the
FSM and attach a dummy arc to store the acoustic score.

3. Construct a transducer from the decoding graph to transform
leaf sequences to state transition sequences, with associated
transition weights. (The transition weights will be used later
to calculate the path score of the leaf sequence.) Apply the
transducer to both reference and decoded leaf sequences.

4. For each sentence, count transitions in the reference and de-
coded sequences (Equation 9), and weight the count for each
transition by the derivative of the sigmoid class loss function
(Equation 8) using the difference in total path scores (Equa-
tion 3). Accumulate over all utterances (Equation 7) to com-
pute the gradient.

5. Update weights in the decoding graph based on the gradient.

6. Repeat from step 2 until the performance on a held-out set
converges.

There are a variety of methods to make the updates based on the
gradient [13]. We tried regular gradient descent (Equation 6) and
Quickprop [14]. For Quickprop, Equations 7-9 are still the same;
the only difference is in the update:

A1 =& = [(ATU) T+ VIX; AL A),  (10)

where the Hessian A%I(A) is assumed to be diagonal [13, 14].

IV -46



4. EXPERIMENTAL SETUP

The experiments are done using a speaker-independent, English
broadcast news recognition system. The language model used to
build the decoding graph is trained on a 132M word corpus com-
prising the 1996 English Broadcast News Transcripts (LDC97T22),
the 1997 English Broadcast News Transcripts (LDC98T28) and the
1996 CSR Hub4 Language Model data (LDC98T31). It is pruned
to a bigram language model with 61K unigrams and 204K bigrams.
This very small model size was necessary to turn around multiple
experiments. A larger language model was used in lattice rescoring
experiments. It was trained on the same 132M word corpus, but was
a back-off 4-gram model containing 61K unigrams, 5.7M bigrams,
14M trigrams, and 8.7M 4-grams.

The acoustic model is trained on a 143-hour corpus com-
prising the 1996 English Broadcast News Speech collection
(LDC97S544) and the 1997 English Broadcast News Speech collec-
tion (LDCY98S71). The recognition features are 40-d vectors com-
puted via an LDA+MLLT projection of 9 spliced frames of 19-d
PLP features. The raw PLP features are normalized using utterance-
based cepstral mean subtraction. In total, the acoustic model in-
cludes 6000 quinphone context dependent states and 120K Gaussian
mixture components. The acoustic model is trained using maximum
likelihood estimation.

For testing, we use the RT-03 English Broadcast News evalu-
ation set, a collection of six news broadcasts from 2001. The total
duration of the test audio is 2.93 hours, and the total number of words
in the reference transcripts is 24790. The segmentation of the test set
audio was derived from the reference transcripts.

S. RESULTS

The first practical issue that arises when doing discriminative train-
ing of decoding graphs is that the reference transcripts of the train-
ing data may not match the decoding graph. There may be out-
of-vocabulary (OOV) words in the training data due to vocabulary
pruning during LM training — we can do nothing about these words.
However, some OOVs may be be correctable, e.g. in the reference
“um” and “uh” may be separate words while in the decoding graph
they are represented as one word with multiple pronunciations, or
OOVs may be caused by typographical errors or spelling variations.
The first step is to normalize the high frequency OOVs to better
match the decoding graph vocabulary.

Because training over all the data takes a long time, we per-
formed some preliminary experiments on a subset of the training
data. Since there is a data weighting effect due to the derivative of
the sigmoid in Equation 8, an intelligent method is to select the sub-
set based on a range of the misclassification function (Equation 3).
By picking d < 2.0, we ended up with about 5K training utterances.

Using this training set, we first explored the difference between
gradient descent and Quickprop for updating the transition weights.
Choosing the proper learning rate (¢) is always tricky for gradient de-
scent and to a lesser degree for Quickprop. For gradient descent, the
learning rate was chosen by considering the largest absolute value of
the gradient, in order to constrain the maximum weight update to be
on the order of 0.1.

Figure 1 shows the convergence rate of simple gradient descent
and Quickprop. The objective function and word error rate (WER)
for the training data, as well as the test data WER, generally decrease
with each epoch of training. Quickprop seems to achieve conver-
gence faster then gradient descent, although the test error curve is a
bit more bumpy at some points.

x10° Training Set Objective Function

1.238 T T T
— — —gradient descent
1.236 quickprop
N
o 1234 i
2
B 1232 B
z
= o123F 4
S
1.228 - —
1.226 - —
1224 I I I I I I I
0 5 10 15 20 25 30 35 40
Training Set WER
9.5 T
— — —gradient descent
9 quickprop
£ 851 i
o
]
= 8r 7
751
7 I I I I I I I
0 5 10 15 20 25 30 35 40
Test Set WER
23.4 T
— — —gradient descent
232+ quickprop
) B
X
x 228 B
g
228Nk T T T T b
224 T

Il
0 5 10 15 20 25 30 35 40
Number of epochs

Fig. 1. Convergence rates for gradient descent and Quickprop

Baseline WER 23.0

d Threshold  No.Training Sentences = WER
2.0 5538 22.3

10.0 24492 21.8

5000.0 56194 21.7

Table 1. Effect of amount of training data on WER

In Table 1, we show the effects of discriminative graph training
on the WER, for various amount of training data. Even with 5538
sentences, we are able to get a significant improvement (of 0.7%)
because of the way we have chosen them: we chose the sentences
that are likely to have the largest contribution to the training. With
more (25K sentences), there is further improvement. Based on the
best results in the table, starting from a baseline WER of 23.0%,
discriminative graph training was able to reduce the WER to 21.7%,
representing an absolute improvement of 1.3%, or 5.7% relative.

In many large vocabulary transcription tasks it is common to
generate lattices representing a large set of possible output hypothe-
ses and then rescore the lattices with a larger, more complex lan-
guage model before producing the final output. One objection to the
discriminative training of decoding graphs is that any gains achieved
through discriminative training will disappear following such lan-
guage model rescoring. We tested this hypothesis by generating lat-
tices using the baseline decoding graph and the best decoding graph
from above (obtained with a d threshold of 5000.0) and rescoring
the lattices with a much larger, 4-gram language model. The base-
line system’s WER drops to 17.7% after rescoring, while the dis-
criminatively trained system’s WER drops to 17.6%. The absolute

IV -47



beam ML  MCE Diff  %Diff

one-pass 14 23.0% 21.7% 1.3% 5.7%
10 23.2% 21.9% 1.3% 5.6%

9 238% 223% 1.5% 6.3%

8 25.7% 23.7% 2.0% 7.8%

7 335% 30.1% 34% 10.1%

LM rescored 14 17.7% 17.6% 0.1% 0.6%
10 185% 18.0% 0.5% 2.7%

9 194% 18.9% 0.5% 2.6%

8 222% 21.0% 1.2% 5.4%

7 31.7% 28.4% 33% 10.4%

Table 2. WER as function of decoding beam width

difference in the number of errors between the two systems is 38.
Thus, the rescoring objection is upheld by these results. We note,
however, that there are a number of applications in which low sys-
tem latency is vital, such as the real-time closed captioning of news
broadcasts, or in which system resources are constrained, such as
speech recognition on handheld computers. In such low-latency and
resource constrained applications, lattice rescoring may not be pos-
sible, so techniques such as discriminative training that improve the
decoding graph itself are of practical interest.

Furthermore, discriminatively trained decoding graphs appear
to have better pruning behavior. Table 2 shows how WER changes
as the beam width for decoding is decreased to reduce computation
and memory requirements. The advantage of using an MCE-trained
decoding graph is even more apparent when very low beam widths
are used. For example, with a beam of 8, the improvement in WER
is increased to 2.0% absolute.

6. DISCUSSION AND CONCLUSIONS

We extended discriminative training of decoding graphs to large-
vocabulary speech recognition with context-dependent acoustic
models. We partially overcame challenges of large graphs and large
amounts of training data, using a simple wFST approach and achiev-
ing decent improvements on a relatively small decoding graph.

The benefit of using a discriminatively trained decoding graph
when a very large language model is available for rescoring is un-
clear at this time. (Such a language model is so large that it cannot
practically be expanded into a decoding graph.) Our current exper-
iments indicate that LM rescoring decreases the benefits of using
our discriminatively trained decoding graph. However, future im-
provements to the training paradigm may show different results. For
example, we do not know what will happen if we had trained a much
larger decoding graph and then used LM rescoring. Also, our simpli-
fied framework for discriminative training does not expose the algo-
rithm to enough realistic acoustic confusions in the training data. Fu-
ture work could include holding out acoustic training data transcripts
from language model training and using lattice or N-best hypothe-
ses. Despite the LM rescoring issue, the discriminatively trained de-
coding graph is particularly useful in low-latency and low-resource
applications such as real-time closed captioning or speech-to-speech
translation, where LM rescoring is not possible.

Another line of future work is to more precisely characterize the
benefits of integrated training of the decoding graph compared with
discriminative LM training. It would also be interesting to deter-
mine whether LM context dependent pronunciation modeling, one
advantage of integrated decoding graph training, is useful for certain

applications.

7. ACKNOWLEDGMENTS

This work was partially supported by the Defense Advanced Re-
search Projects Agency under contract No. HR0011-06-2-0001. We
thank Hagen Soltau for help with the IBM ASR package Attila, and
Stan Chen, Mohamed Afify, and Alain Biem for discussions.

8. REFERENCES

[1] Mehryar Mohri, Fernando Pereira, and Michael Riley,
“Weighted finite-state transducers in speech recognition,”
Computer Speech and Language, vol. 16, no. 1, pp. 69-88,
2002.

[2] Andreas Stolcke and Mitch Weintraub, “Discriminative lan-
guage modeling,” in Proc. 9th Hub-5 Conversational Speech
Recognition Workshop, 1998.

[3] Hong-Kwang Jeff Kuo, Eric Fosler-Lussier, Hui Jiang, and
Chin-Hui Lee, “Discriminative training of language models for
speech recognition,” in Proc. ICASSP 2002, Orlando, Florida,
May 2002.

[4] Vaibhava Goel, “Conditional maximum likelihood estimation

for improving annotation performance of N-gram models in-

corporating stochastic finite state grammars,” in Proc. ICSLP

2004, Jeju Island, Korea, Oct. 2004.

Brian Roark, Murat Saraclar, and Michael Collins, “Discrimi-

native n-gram language modeling,” Computer Speech and Lan-

guage, 2006, to appear.

Brian Roark, Murat Saraclar, Michael Collins, and Mark John-

son, “Discriminative language modeling with conditional ran-

dom fields and the perceptron algorithm,” in Proc. ACL,

Barcelona, Spain, July 2004.

[5

—_

[6

=

[7] Shiuan-Sung Lin and Frangois Yvon, “Discriminative training
of finite state decoding graphs,” in Proc. Interspeech 2005,
Lisbon, Portugal, Sept. 2005.

[8] Shigeru Katagiri, Chin-Hui Lee, and Biing-Hwang Juang,
“New discriminative algorithm based on the generalized prob-
abilistic descent method,” in Proc. IEEE Workshop on Neu-
ral Network for Signal Processing, Princeton, Sept. 1991, pp.
299-309.

[9] Biing-Hwang Juang, Wu Chou, and Chin-Hui Lee, “Minimum
classification error rate methods for speech recognition,” /EEE
Transactions on Speech and Audio Processing, vol. 5, no. 3,
pp. 257-265, May 1997.

[10] Stanley F. Chen, “Compiling large-context phonetic decision
trees into finite-state transducers,” in Proc. Eurospeech 2003,
Geneva, Switzerland, Sept. 2003.

[11] Stanley F. Chen, “The IBM finite-state machine toolkit,” Tech.

Rep., IBM T.J. Watson Research Center, Feb. 2000.

Mehryar Mohri, Fernando C. Pereira, and Michael

Riley, “AT&T Finite-State ~Machine Library,”

http://www.research.att.com/ fsmtools/fsm/.

[13] Jonathan Le Roux and Eric McDermott, “Optimization meth-
ods for discriminative training,” in Proc. Interspeech 2005,
Lisbon, Portugal, Sept. 2005.

[14] Scott E. Fahlman, “An empirical study of learning speed in
back-propagation networks,” Tech. Rep. CMU-CS-88-162,
Carnegie Mellon University, Sept. 1998.

[12

—_—

IV-48



