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ABSTRACT

A novel distributed language model that has no constraints on the
n-gram order and no practical constraints on vocabulary size is pre-
sented. This model is scalable and allows for an arbitrarily large
corpus to be queried for statistical estimates. Our distributed model
is capable of producing n-gram counts on demand. By using a novel
heuristic estimate for the interpolation weights of a linearly inter-
polated model, it is possible to dynamically compute the language
model probabilities. The distributed architecture follows the client-
server paradigm and allows for each client to request an arbitrary
weighted mixture of the corpus. This allows easy adaptation of
the language model to particular test conditions. Experiments us-
ing the distributed LM for re-rankingN -best lists of a speech recog-
nition system resulted in considerable improvements in word error
rate (WER), while integration with a machine translation decoder
resulted in signi cant improvements in translation quality as mea-
sured by the BLEU score.

Index Terms— Statistical language modeling, Speech recog-
nition, Statistical machine translation, Client-server systems, Dis-
tributed memory systems

1. INTRODUCTION

Statistical language models have a major role in applications such
as Automatic Speech Recognition (ASR) [1], Statistical Machine
Translation (SMT) [2], and Information Retrieval. These applica-
tions depend critically upon models of natural language to evaluate
decoding hypotheses. A statistical language model assigns a proba-
bility P (W ) to any given word stringW = w1w2 . . . wm, typically
factored as

P (W ) = P (w1w2 . . . wm) = P (w1)

mY

k=2

P (wk|W k−1
1 ) (1)

where the sequence of words w1w2 . . . wj is denoted by W j
1 .

In n-gram models, which are the state-of-the-art, the probability
P (wi|W i−1

1 ) is approximated by conditioning only on the last n−1
words; that is P (wi|W i−1

1 ) ≈ P (wi|W i−1
i−n).

Conventional n-gram models are plagued by high dimensional-
ity, and have a large number of parameters which must be estimated.
In order to estimate these parameters, a large amount of training data
is required. For these reasons, language models are usually very ex-
pensive in terms of physical resources consumed. Some techniques
used to mitigate these burdens have included class-based language
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models, as well as methods such as count cut-offs or entropy prun-
ing that reduce the language model size [3].

However, as corpus size increases, it becomes increasingly dif -
cult, if not impossible, to build a language model off-line. Given the
large amount of training text required to estimate n-gram models,
and the rate at which new data becomes available, it is becoming in-
creasingly necessary to develop infrastructures that can handle large
amounts of training data, specially for n-gram models of high orders
(n > 3).

In this paper we present a distributed language model in the
client-server paradigm that can readily handle very large amounts
of training data. The infrastructure is scalable, and more data can be
incrementally added without the need to change or re-compute any
of the pre-existing modules, and the model can be easily grown as
more data becomes available. Furthermore, the infrastructure allows
for multiple clients, each with different needs to be served simul-
taneously. Even decoders with dynamically changing needs can be
handled.

In conventional n-gram models, the decisions about the speci-
cations of the model are usually made before it is estimated from
the training data. These speci cations include vocabulary size, n-
gram order, and smoothing method. Since, in our distributed model,
the actual corpus in its entirety is stored, there are no restriction on
the n-gram order or the mixture of corpora used, and any client can
choose any speci cation upon connection to the server. In this re-
gard, the distributed architecture has usage beyond just language
modeling and has applications in any problem where n-gram counts
are required.

Our storage architecture makes use of the characteristics of
present day server systems, and by distributing the storage of the
corpus across multiple machines, we allow for many new potential
dynamic combinations of data from multiple independent corpora.

We use our distributed model in re-ranking theN -best lists from
a ASR system, getting up to 5.3% relative improvement in Word Er-
ror Rate (WER). Furthermore, using our distributed language model
with an SMT decoder resulted in up to 3.3 BLEU points (7.1% rela-
tive) improvement in translation performance.

2. DISTRIBUTED ARCHITECTURE

Figure 1 illustrates the architecture of the distributed language
model. A similar distributed architecture was independently pro-
posed in [4], and used for re-ranking N -best lists output by a ma-
chine translation decoder. The data is divided among several ma-
chines, which we refer to as the LM workers. There is no training
data stored on the server machine; its sole job is to facilitate com-
munication between the clients and the workers and to compute the
language model probabilities.
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Fig. 1. Clients can have different weight vectors

The communication between the server and the workers is im-
plemented using the Message Passing Interface (MPI) library [5].
Communication between the clients and the server is implemented
via TCP/IP socket networking. This allows a more exible architec-
ture where clients can connect to and disconnect from the server at
will and independently. Clients usually send queries in large batches
so as to minimize the TCP/IP communication overhead.

Each worker is capable of storing either a whole corpus or a
stand-alone, smoothed n-gram language model. Section 2.1 details
the use of suf x arrays for storing a corpus and for ef cient lookups
of n-gram counts. A client can request any mixture of the workers,
specifying arbitrary weights for each of the component corpora or
language models.

2.1. Suf x Arrays

Calculating the number of occurrences of a sequence of words in a
large corpus can be done if the corpus is suitably indexed. A suf x
tree is a data structure that can be built in time and storage propor-
tional to the length of the corpus. However, as in many applications,
we found the similar suf x array data structure to be preferable due
to the ease of construction [6].

To build the suf x array index, an index of offsets is initialized
to point to every offset in the corpus. This index is then reverse lex-
icographically sorted effectively creating a sorted view of the entire
corpus.

To nd the number of n-grams matching a particular his-
tory the algorithm explained in Algorithm 1 is used. The
OffsetEqual(List,Value,Offset) function returns the
sublist of the indicated portion of the corpus that has the word, at
the speci ed offset, equal to the current word of the history. Because
the corpus is lexicographically sorted, this can be implemented using
a binary search in O(N log C) time, when N is the size of the n-
gram and C is the total length of the corpus. It should also be noted
that computing the count C(w1w2w3) also computes C(w2w3)
and C(w3) as intermediate results.

The corpus is divided so that each portion, along with its index,
will t within the available physical RAM of each host in the dis-
tributed language mode. And, because we do not count n-grams that
cross sentence or document boundaries, the total count for the entire
corpus can be computed by aggregating the counts from each of the
clients.

Algorithm 1 n-gram(h)
Require: h a reverse iterator pointing to the current word {Returns
the number of occurances of the n-gram}
B ⇐ begining of reverse sorted corpus
E ⇐ end of reverse sorted corpus + 1
i ⇐ 0
while E > B and h.hasNext() do

(B, E) = OffsetEqual( (B, E), h.next(), i)
i ⇐ i + 1

end while
return E −B

2.2. Dynamic Smoothing

n-gram language models require many parameters to be estimated
before the model can be used. These parameters include estimates of
word string probabilities as well as the parameters used for smooth-
ing. For example, in back-off language models, the weights for
backing-off from higher order to lower order n-grams need to be
estimated. Similarly, in linearly interpolated models,

Pintp(wi|W i−1
i−n+1) = λ

W i−1
i−n+1

Pml(wi|W i−1
i−n+1) +

(1− λ
W i−1

i−n+1
)Pintp(wi|W i−1

i−n+2) (2)

where the maximum likelihood estimate Pml is interpolated with
the lower order smoothed model Pintp , which is de ned in a sim-
ilar fashion. A model is typically built iteratively starting with the
lowest order probabilities [7]. Estimating a distinct λ

W i−1
i−n+1

for

each W i−1
i−n+1 is not practical; in practice the λ

W i−1
i−n+1

values are

grouped into bins based on the word counts C(W i−1
i−n+1), where the

nal weight in each bin is assumed to be equal [1].
Normally, in linearly interpolated models, the interpolation

weights λ
W i−1

i−n+1
are estimated on some held-out data using the

EM algorithm [8]. In a similar fashion, back-off models use ad-hoc
discounting and back-off parameters that are estimated, or assigned
manually, before the language model is used.

For simplicity, we have decided to use linearly interpolation as
the smoothing method for our distributed LM architecture. It is also
possible to use a back-off smoothing framework, at the cost of a bit
more involved lookups and computations. However, we carried out
some simple experiments with different smoothing techniques and
decided that the choice of smoothing method is less relevant as we
move to very large corpora.

Noting that the λ
W i−1

i−n+1
are a function of only the counts

C(W i−1
i−n+1), we have instead opted for a closed-form heuristic for-

mula for computing λ
W i−1

i−n+1
. After plotting the weights λ

W i−1
i−n+1

estimated using EM on a held-out set against counts C(W i−1
i−n+1)

we noticed that the plot can be approximately tted to a log-linear
curve, from which we estimated the interpolation weights for the
distributed language model:

λ
W i−1

i−n+1
= 0.1 log10(C(W i−1

i−n+1)) + 0.3 (3)

from which all the n+1 interpolation weights for the model in Equa-
tion 2 are computed in an iterative manner starting from the highest
order n-gram.

The clear advantage of this heuristic formula is that λ
W i−1

i−n+1
is

directly computable from word counts in the training data. It should

IV  38



Training λ estimation Perplexity
I EM 193
I heuristic 216
II EM 128
II heuristic 137

Table 1. Perplexities for different interpolation weight estimation
methods

also be noted that there is no lookup overhead here, since the count
C(W i−1

i−n+1) needs to be extracted anyway to estimate the probabil-
ity Pml(wi|W i−1

i−n+1).
Table 1 shows perplexities of linear interpolated 5-gram mod-

els using both the bucketed EM estimate and heuristic interpolation
weights. There are 2 different training data sets used, denoted by I
and II in the table and consisting of approximately 200M and 2.9G
words respectively. The held-out data used for EM estimation of the
weights is a corpus of 35M words. The vocabulary size is 128K and
the perplexities are reported on an unseen test set of 58M words.

As can be seen in the table the linearly interpolated model with
heuristic interpolation weights has comparable perplexity to those
estimated using the EM algorithm. It should also be noted that EM
maximizes the performance of the model for likelihood, and hence,
the perplexity. We expect the difference between the heuristic and
EM estimated weights to be smaller when used for a practical task
such as ASR or SMT where the performance is measured by metrics
which are not fully correlated with perplexity.

2.3. Model Details

Assume there are m1 workers with suf x array corpora and m2

stand-alone smoothed n-gram models for a total ofm1 + m2 work-
ers. Assuming that the j th client is using the worker mixture vector`
sj
1, s

j
2, · · · , sj

k

´
, then the aggregate count is simply Cj(W n

1 ) =Pm1
i=1 sj

iCi(W
n
1 ) where Ci(W

n
1 ) is the count of n-gram W n

1 for
the corpus stored at worker i.

In case the client requested probabilities, the aggregate proba-
bility P j

a (wn|W n−1
1 ) is computed according to equations 2 and 3

above, using the aggregate statistics Cj . Taking into account the
stand-alone smoothed LM workers, the nal probability is de ned
as follows:

P j(wn|W n−1
1 ) = αjP j

a (wn|W n−1
1 ) +

(1− αj)

m2X

i=1

sj
iPm2

l=1 sj
l

P i
w(wn|W n−1

1 ) (4)

where P i
w(wn|W n−1

1 ) is the probability from the ith stand-alone

worker, and αj =
Pm1

i=1 s
j
i

Pm1+m2
i=1 s

j
i

.

3. EXPERIMENTS AND RESULTS

We carried out experiments using our distributed language model for
both speech recognition and machine translation tasks. In the ma-
chine translation experiments, the distributed language model was
directly integrated into the decoder. In the speech recognition exper-
iments, however, the distributed model was used only in re-ranking
N -best lists created by a speech recognition decoder using standard
language models.

RT-03 Dev-04 RT-04
baseline 9.5 17.7 15.0
5-gram DLM 9.0 17.4 14.5

Table 2. ASR N -best re-ranking

Model MT-03 MT-05
Phrase-based Decoder 3gm 48.84 46.92
Phrase-based Decoder 5gm DLM 51.10 50.25
Max-Ent Decoder 3gm 48.95 48.02
Max-Ent Decoder 5gm DLM 51.35 51.30

Table 3. Arabic BLEU Results

3.1. Speech Recognition

We carried experiments re-ranking the N -best lists output by a
speech recognizer. The system description is similar to that given
in [9]. The lattices are generated using a two-pass speech recognition
system that performs a speaker-independent recognition pass; then a
series of speaker adaptation steps, including vocal tract length nor-
malization, feature-space MLLR, and MLLR; and concludes with
a speaker-adapted recognition pass. The speaker-independent and
speaker-adapted acoustic models are trained on a 450-hour corpus
comprising the 1996 and 1997 English Broadcast News Speech col-
lections and the English broadcast audio from TDT-4. The lan-
guage model used by the decoder was a 4-gram modi ed Kneser-
Ney model trained on 192M words and interpolated with ve other
4-gram models trained on topic speci c subsets of the original 192M
words data. The nal merged model was pruned to a total of 3.2M
n-grams. The nal speaker-adapted recognition pass performed in-
memory lattice re-scoring using a larger, 30M n-gram language
model that differed from the one used to produce the decoding graph
only in the degree of pruning.

Table 2 shows the results of using the distributed language
model, in this case a 5-gram trained on 4 billion words, for re-
ranking the 500-best lists from two EARS English Broadcast News
evaluation sets (RT-03 and RT-04) and one development set (Dev-
04f). As can be seen using the larger distributed LM results in con-
siderable improvements in Word Error Rate across all the three sets.
It should be noted that out of the 500 hypotheses per utterance in
average only 9.5 were unique word strings and the distributed model
achieved the shown reduction by effectively only re-raking these re-
maining few hypotheses.

3.2. Machine Translation

The phrase decoder we use is inspired by [10]. It is a multi-stack,
multi-beam search decoder with as many stacks as the length of the
source sentence and a beam associated with each stack. It is de-
scribed in more details in [11]. The training data for the Arabic
translation system consisted of 4.6M sentence pairs, totaling 124M
Arabic, and 143M English words. The MT-03 and MT-05 test sets
consist of 663 and 1056 segments respectively. We also used a dif-
ferent decoder based on the Maximum Entropy (Max-Ent) approach.
The Max-Ent decoder is a novel method of using simple translation
blocks, which allows the translation problem to be cast into a classi -
cation problem where instead of encoding the context in long phrasal
blocks, it is cast as feature function on simple blocks [12].
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Model MT-03 MT-04 MT-05
3-gram 26.93 28.72 26.10
5-gram DLM 29.10 30.09 29.18

Table 4. Chinese BLEU Results

For the Chinese translation system CE Training data there were
about 8.4M sentence pairs, totaling 212.5MChinese and 241.2M En-
glish words. We only used the phrase-based decoder for the Chinese
to English translation experiments. It should be noted that the train-
ing data was sampled for each test set; the actual training data being
used is in average 400K sentences in size. The test sets MT-03, MT-
04, and MT-05 are 919, 1788, and 1082 sentences long respectively.

The results for the Arabic-English and Chinese-English experi-
ments are given in Tables 3 and 4 respectively. The 3-gram LM is a
linearly interpolated model trained with a vocabulary size of 128K
on about 2.8 billion words with bigram and trigram with count less
than 3 pruned. The 5-gram distributed model was trained on 2.3 bil-
lion words with a vocabulary size of just over a million. As can be
seen, using the distributed model that allows for larger corpus and
higher order n-gram with no pruning (not to mention larger vocabu-
lary size) results in signi cant improvements across all systems and
test-set. For example, in the case of the Arabic-English system, the
phrase-based decoder achieves a 3.3 BLEU point improvement in
using a 5-gram language model over a 3-gram for both MT-03 and
MT-05 test sets.

When compared with the ASR experiments, it is clear that we
achieve better improvements with the distributed LM for the SMT
task. One explanation is that for the SMT experiments, the dis-
tributed language model was directly integrated into the decoder,
whereas in the ASR experiments the distributed model was used only
to re-rank very shallow (N ≈ 9.5)N -best lists. Another explanation
is that the tokenization and vocabulary selection for the distributed
language model were optimized with only the SMT tasks in mind.

4. DISCUSSION AND FUTUREWORK

In this paper we presented a novel distributed architecture for stor-
ing large-scale and scalable corpora and language models. The dis-
tributed architecture is capable of handling arbitrarily large corpora,
while placing no restrictions on either the n-gram order or vocab-
ulary size. Computing n-gram counts of arbitrary order was made
possible by storing the original corpus in the suf x array format. By
developing a novel closed-form heuristic formula for interpolation
weights, we were able to compute the conditional probability for
any given n-gram dynamically.

We applied the distributed language model in re-ranking theN -
best list of a state-of-the-art ASR system achieving up to 5.3% rela-
tive improvement in WER. We also used the distributed LM directly
integrated in an SMT decoder, gaining across different systems and
test-sets, considerable and consistent improvements in translation
quality as measured by the BLEU score.

Our distributed architecture allows for each client to choose the
subset of the corpus, with arbitrary weights for each component cor-
pus. This allows for a exible language modeling architecture where
the mixture of corpora is selected and changed dynamically as the
test-set changes.

It should be noted that since the distributed model produces raw
n-gram counts, it can be utilized for more than just producing con-
ditional n-gram probabilities P (w1|W n−1

1 ) (e.g. computing co-
occurrence and mutual information), and can nd applications be-
yond language modeling.

The next step in extending this work is to integrate the dis-
tributed model in the ASR decoder, as was done for the SMT system.
In the future, we plan to develop other smoothing methods for the
distributed model (e.g. back-off). We are also planning to develop
algorithms where the corpora mixture vector is adapted automati-
cally to the test-set. We are also investigating novel techniques to
use the n-gram statistics for ASR or SMT N -best re-ranking.
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