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ABSTRACT

We propose a Gaussian mixture language model for speech recog-
nition. Two potential bene ts of using this model are smooth-
ing unseen events, and ease of adaptation. It is shown how this
model can be used alone or in conjunction with a a conventional
N-gram model to calculate word probabilities. An interesting fea-
ture of the proposed technique is that many methods developed
for acoustic models can be easily ported to GMLM. We developed
two implementations of the proposed model for large vocabulary
Arabic speech recognition with results comparable to conventional
N-gram.
Index Terms: Language model, N-gram, Gaussian mixture model,
continuous space.

1. INTRODUCTION

For long time the N-gram [1] has been the dominant technology for
language modeling in speech recognition and other related appli-
cations. In spite of this success, the N-gram suffers from two major
drawbacks that we refer to here as generalizability and adaptabil-
ity. These two related issues will be discussed below.

The rst problem, generalizability, arises because an N-gram
which is not explicitly observed in the training corpus is not mod-
eled. The best we could do is to back-off or smooth it with a lower
order model. This sacri ces modeling accuracy. For example, the
sentences ”The dog runs in the bedroom”, and ”A cat walks in the
room”1 are quite similar in structure, but N-gram models are un-
conscious to this similarity and are incapable of using it. There
are some methods proposed in the N-gram context to make use of
these relationships. These techniques, generally speaking, employ
word classes and/or parsing techniques to inject structural rela-
tionships, as in the previous example, in N-grams. One alternative
view to the problem is in a continuous parameter space with a well
de ned notion of similarity. That is, some words or N-grams are
”closer” to each other than other words or N-grams. The second
aspect, adaptability, is also closely related to the rst one. Usu-
ally an N-gram model has a huge number of parameters. Thus,
it is very dif cult to adapt it using a relatively small amount of
data. This is in contrast to acoustic models, where a large model
can be ef ciently adapted using a few utterances. This is primarily
achieved by exploiting the inherent structure in the model by tech-
niques like maximum likelihood linear regression (MLLR) [3].
Again moving to a continuous parameter space can help alleviate
this problem.

Based on the two problems that are brie y introduced above,
we propose to build language models in a continuous parameter

1This example is taken from [2].

space using Gaussian mixtures. The principle of working in a
continuous space for language models is not entirely new. Latent
semantic analysis [4] employs a continuous representation for se-
mantic clustering of words. In addition, it shows how to integrate
this long history information with an N-gram for large vocabu-
lary speech recognition. Also large scale neural network language
models (NNLM) were initially proposed in [2]. They were then
integrated in state of the art speech recognition system in [5]. The
NNLM addresses the rst problem raised above by moving to a
continuous parameter space. In this space there is a notion of ”dis-
tance” between different entities. This helps to generalize from
seen to unseen events. However, it does not solve the second prob-
lem. This is because there is no quick method of adapting large
neural networks from limited amount of data. In addition, the
NNLM introduces scalability problems both in training and test-
ing. Gaussian mixture models, on the other hand, do not suffer
any of these limitations. We know how to build large scale GMMs
and also to ef ciently adaptat their parameters from acoustic mod-
eling.

The paper is organized as follows. We formulate the Gaussian
mixture language model (GMLM) in Section 2. We give a suit-
able mapping method from the discrete word space to a continu-
ous space and show how to model the resulting continuous vectors.
Sections 3 and 4 consider adaptation and parameter estimation for
the proposed model. Experiment results for large vocabulary di-
alectal Arabic speech recognition are given in Section 5. Finally
Section 6 summarizes our ndings.

2. MODEL FORMULATION

Perhaps a simple way to think about language models in a con-
tinuous space is from a classi cation point of view. Each time the
language model is presented with a history, either discrete as in the
case of N-gram or continuous as we will discuss in this paper, it
has to decide the most likely following word, or equivalently as-
sign a probability to each word in a speci ed vocabulary. Thus,
what we need to construct a continuous space LM is: a mapping
from the discrete word space to a continuous representation, and
a classi er which decides the next word given the mapped history
in the resulting space. What we hope for is that in the new con-
tinuous space there is some form of distance or similarity between
histories such that histories not observed in the data for some word
are smoothed by similar observed histories. This addresses the
generalizability issue discussed above for N-gram models. Inter-
estingly, that is what exactly happens in the NNLM [2]. There is
a linear layer which maps from the word space, an indicator vec-
tor with dimension equal to the vocabulary size, to a much smaller
continuous parameter space. Concatenations of these continuous
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vectors, corresponding to the history, are then input to a classi er.
This classi er is a multi-layer percepton (MLP), and has output
nodes equal to the vocabulary size. Hence, for each input history
this classi er chooses one of the output words, or alternatively as-
signs a probability value to each word in the vocabulary. Both the
transformation and the classi er are learned together to maximize
the likelihood of the data, which is a desirable property. How-
ever, NNLM can not be easily adapted, and suffers from scalability
problems for typical amounts of data and vocabulary sizes in large
vocabulary speech recognition.

Here, we take a different avenue. Assume we have a vocabu-
lary of size V , each word {i 1 ≤ i ≤ V } can be represented by
an indicator vector wi having one at the ith position and zero in all
other V −1 positions. This vector is mapped to a lower dimension
(M ) vector ui, where M typically ranges from 50 to 150, using a
matrix A of dimension M × V . This can be written as

ui = Awi (1)

Now, each history h consists of a set of words of sizeN −1 for an
N-gram2. Using the word mapping in Equation (1) the history h
can be written as a concatenation of the appropriate mapped words
as

vj = uI(hN−1)..........uI(h1 ) (2)

where {j 1 ≤ j ≤ V N−1} is an index of the history, hn indi-
cates the nth word in history h, and I() is the word identity of
its argument. Vectors vj are of dimension M(N − 1), this for
typical 3-gram or 4-gram histories ranges from 150 to 600. Given
the above mapping from history h to vector3v we can collect the
training data histories for each word i and build a Gaussian mix-
ture model. Alternatively one can cluster the words and construct a
language model for each word cluster. It is known that modeling is
more dif cult in large parameter spaces, often referred to as curse
of dimensionality. Thus, we can optionally propose another linear
mapping B of the histories from the M(N − 1) dimension to a
smaller dimension L around say 50, and construct the Gaussian
mixture models in the new space given by

yj = Bvj (3)

where {j 1 ≤ j ≤ V N−1} is an index of histroy, and y denotes
the new feature space.

The previous paragraph gives a high level description of the
proposed Gaussian mixture language modeling (GMLM) approach.
We have not yet speci ed how to calculate the matrices A and B.
We will do that in Section 4. Now, we will outline how to use the
proposed model to calculate word probabilities.

In the following presentation P ()will be used to denote proba-
bilities, while probability densities will be referred to as p(). Some-
times we will loosely speaking mention that p() is an approxima-
tion to P (). In fact the Gaussian mixture model of each word w
calculates the probability densities for an observed mapped history
y given the word, which can be written as

p(y|w) =
Kw�

k=1

cw,kN (y, μw,k ,Σw,k) (4)

2We limit histories to N-gram of words for simplicity of presentation
but this limitation can be easily relaxed.

3Subscript is dropped for convenience.

where Kw is the number of components in the Gaussian mixture
of word w, and {cw,k, μw,k ,Σw,k 1 ≤ k ≤ Kw} are the mix-
ture weights, means, and covariances for the kth component re-
spectively. Given the above mapping this can be viewed as an
approximation to the probability P (h|w), but what we are really
interested in are the probabilities P (w|h) or their approximation
P (w|y). This can be calculated using Bayes rule as follows

P (w|y) =
P (w)p(y|w)

p(y)
=

P (w)p(y|w)
�V

v=1 P (v)p(y|v)
(5)

where P (w) can be taken as the usual unigram probability esti-
mate of word w.

Interesting generalizations of Equation (5) can be obtained as
follows. First we may note that the unigram probabilities P (w)
can be made context dependent by taking them from an already
exisitng N-gram. If this N-gram has an order that is equal to or
greater than the one used in de ning the continuous contexts y,
then the Gaussian mixture model can be viewed as performing a
kind of smoothing of the original N-gram. This can be written as

Ps(w|h) =
P (w|h)p(y|w)
�V

v=1 P (v|h)p(y|v)
(6)

where Ps(w|h), and P (w|h) are the smoothed and original N-
grams. Interestingly, Equation (6) has a close relationship to the
history factorization suggested by Bellegarda in [4]. In [4] the
word N-grams are modulated, to boost or decrease them, depend-
ing on some probabilities derived from the current topic or seman-
tic content of the document. Here, the same modulation effect hap-
pens but using Gaussian mixture models constructed from the local
N-gram statistics. To better understand this modulation effect, as-
sume we have histories h1 and h2 for some word w, and that h2 is
not observed in the training data. In this case, h2 will be assigned
low probability by the conventional N-gram. If the two histories
are close in the continuous space, then p(y2|w) will get a high
value, because y1 is used in constructing the mixture model, and
hence will help boost the probability Ps(w|h2). Another interest-
ing generalization of (6) can be obtained by taking the smoothing
issue further and instead of building a Gaussian mixture for each
word, we build one for each word cluster, where word clusters can
be obtained using any appropriate method. This can be written as

Ps(w|h) =
P (w|h)p(y|C(w))
�V

v=1 P (v|h)p(y|C(v))
(7)

where C(w) is the word class of w. In the above equations (5),
(6), and (7) it may happen that the dynamic ranges of the N-gram
and the Gaussian mixutre probabilities vary. In this case expo-
nents can be used to overcome this dif culty in the same way
as done in acoustic models. Also the calculation of the Gaus-
sian mixture models, as in for example Equation (5), for all words
or word classes may be computationally intensive. The computa-
tional complexity can be signi cantly reduced using fast Gaussian
computation through Gaussian short lists.

So far we presented a Gaussian mixture language model (GMLM)
and showed how to use it for calculating word probabilities either
on its own as in Equation (5), or to smooth an existing N-gram as in
Equations (6) and (7). We also discussed how this language model
can address the generalizability issue raised in the introduction. In
Section 3 we will show rst how to adapt the model parameters
using a limited amount of adaptation or test data, then in Section 4
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we will discuss parameter estimation including the projection ma-
trices A, B, and the Gaussian mixture model parameters for each
word or word class.

3. MODEL ADAPTATION

One of the most important problems that face N-gram language
models is adaptation. Acoustic models are easily adapted from
a relatively small number of sentences by utilizing the structure
in the model using techniques like maximum likelihood linear re-
gression (MLLR) [3]. Attempts to adapt language models were in
general not successful and lead in most situations to modest im-
provements if any. The main reason is that it is inherently dif cult,
in the absence of any structure, to adapt a large number of param-
eters from little adaptation or test data. The introduced Gaussian
mixture model can be used to overcome this problem.

First the transcription of adaptation data or equivalently the
output of a recognizer is a stream of words which can be trans-
formed into the continuous space using Equations (1), and (3) and
the values of the matrices A and B obtained during training. This
results in a sequence of vectors which can be used to adapt the
parameters of the Gaussian mixture models of the words or word
classes in Equation (4). This adaptation can be ef ciently achieved
using techniques like MLLR as stated above. In the case that mul-
tiple transformations are needed the Gaussians can be clustered
in a tree structure using well known methods for acoustic mod-
els. For example, in the case of MLLR adaptation and using only
one transformation matrix Z, we can write each adapted mean
μ

′

w,k = Zμw,k , which is used in Equation (4) to calculate the
adapted values of p(y|w), which in turn can be used in Equations
(5), (6), or (7) to calculate the adapted language model. It should
be noted that the transformation matrix Z can be calculated using
standard MLLR [3].

4. PARAMETER ESTIMATION

Starting from a text corpus we want to estimate the transformation
matrices A, and B, and the Gaussian mixture parameters for each
word w which are given by {cw,k , μw,k,Σw,k 1 ≤ k ≤ Kw},
where Kw is the number of components for word w. We recall
from Section 2 that the text corpus can be written as a sequence of
indicator vectors each of size equal to the vocabulary size V , and
also that each N-gram history (N-1 words) is labeled as belonging
to the following word or word class. We will show rst how to cal-
culate the matrix A, then move to estimating B, and the Gaussian
mixture models.

A straightforward way to think about the estimation of A is
using linear discriminant analysis (LDA) [6]. For each word we
limit the history to the previous word for the purpose of estima-
tion4 of A. Using the history indicator vectors we can estimate
the within class covariance C, and the between class covariance
D, and hence estimate the projection matrix A as consisting of
the M eigenvectors corresponding to theM largest eigenvalues of
C−1D. However, note that the matrices are of size V × V and
hence this decomposition is very expensive for typical vocabulary
sizes around 60K words. Thus we use a simpler way. First we form
the word co-occurrence matrixE, where eij is the number of times

4This is done for computational reasons, and theoretically larger histo-
ries can be used.

5 word i follows word j, this is similar in spirit to latent semantic
analysis (LSA) e.g. [4], but using the word co-occurrence matrix
instead of the word-document co-occurrence matrix. Starting from
a singular value decomposition (SVD) of E we from the projec-
tion A from M singular vectors corresponding to the M largest
singular values. The matrixE is still of dimension V ×V , but it is
typically sparse, and our need of onlyM singular values allows the
use of ef cient procedures [7] to perform the SVD. It is interesting
to note that, for indicator vectors, the co-occurrence matrix E is
an approximation of the between class covariance D, and hence
decomposing the matrixE is equivalent to performing LDA under
the assumption that the within class covariance is the unit matrix.

Once the A is estimated, all the training data can be mapped
into vectors of size M , and hence each N-gram history is mapped
into a vector of size M(N − 1) that is associated to the follow-
ing word. The matrix B projects from this M(N − 1) dimension
to a lower dimension L. For example, if M = 100, L = 50,
and a 4-gram history is used the matrix B should project a 300-
dimensional vector to a 50-dimensional vector. Thus, the estima-
tion of the projection matrix B and the Gaussian mixture model
parameters of different words is similar to that of estimating a
projection matrix and the Gaussian mixture model parameters in
acoustic modeling. This is typically accomplished using LDA fol-
lowed by a maximum likelihood linear transform (MLLT) for the
projection matrix and the well-known maximum likelihood esti-
mation of Gaussian mixture models. However, it is important to
note that in our case the assignment of vectors to words is known,
in contrast to acoustic model estimation where a segmentation pro-
cedure is carried out for each utterance, and this facilitates the
whole estimation process.

To summarize, parameter estimation amounts to the following
two steps:

1. Estimate the projection matrix A by SVD of the word co-
occurrence matrix E.

2. Once the A is estimated, both the projection matrix B and
the Gaussian mixture model parameters can be estimated
using standard techniques from acoustic modeling, for ex-
ample, LDA+MLLT transform, and the well known EM ap-
proach for estimating Gaussian mixture models.

5. EXPERIMENTAL RESULTS

We apply the proposed GMLM to dialectal Arabic speech recogni-
tion. The system is used as a front-end to a speech-to-speech trans-
lation system [8]. The feature space has 40 dimensions, obtained
by projecting using (LDA+MLLT) a 216 dimensional space, that
consists of concatenating nine 24-dimensional MFCC coef cients.
The acoustic model is trained on about 200 hours of speech using
maximum-likelihood estimation. 33 graphemes are used as basic
phonetic units, each grapheme is represented by 3 states. These
states are clustered into about 3K leaves, and each leaf is modeled
using a GMM. The total number of Gaussians is about 60K. The
language model data has about 400K sentences comprising about
2M words. The vocabulary has 98K words. Trigram Language
models are built using Kneser-Ney smoothing. The test data has
2719 sentences spoken by 19 speakers. A Viterbi decoder uses the
acoustic and language models to generate 160 alternatives per sen-
tence on average. The baseline LM, the GMLM, and an interpo-
lation of both the baseline LM and GMLM are used to rescore the

5Different normalizations can be applied to the raw counts.
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N-best list. The interpolated LM uses uniform weights. Because
the current implementation of the GMLM is computationally in-
tensive, mainly due to the denominator term in Equation (6), we
limited the rescoring to the 5-best utterances in the list. This may
limit the potential bene t that could be obtained from the proposed
method. We will address this issue in the future by caching the
Gaussian scores and using Gaussian short lists.

The GMLM is trained as follows. First note that a GMM is
needed for each word, and hence a suf cient number of observa-
tions (histories) must exist for the word. For this reason we limited
the construction of GMMs for words that occur 100 times or more.
From the original 98K vocabulary we ended up in 2950 words. For
the rest of the words we had two implementations. In the rst, we
mapped all the remaining words into one class, a sort of ller or
unknown word. In the second, we clustered the remaining words
into 200 classes using the SRILM toolkit [9]. We will give results
on both implementations below.

In both cases, after selecting the vocabulary the rest of the im-
plementation is the same. First, the word co-occurrence matrix E
is constructed, where eij is the number of times that word i fol-
lows word j. The count is then smoothed as e

′

ij = log(1 + eij).
Singular value decomposition (SVD) is performed on the resulting
smoothed count matrix. The subspace projection method provided
in the publicly available SVDPACK software is used to compute
the 100 highest singular values and their corresponding singular
vectors. The resulting singular vectors are used to construct the
projection to a 100-dimensional space. To create a trigram, the
vectors corresponding to the two words in the history are stacked
to form a 200-dimensional vector. Thus, a document can be rep-
resented by a sequence of 200-dimensional vectors correspond-
ing to the history of each of its constituent words. Beyond this
step training is similar to acoustic model training. First we use
an LDA+MLLT projection to reduce the dimensionality to 50 and
then build diagonal covariance GMMs. However, it should be
noted that in contrast to acoustic model training neither alignment
nor decision tree clustering is needed. This makes training simpler.

For the rst implementation, in calculating the GMLM score
as in Equation (6) the score coming from the Gaussian mixture
is divided by 40 to balance its dynamic range with that of the N-
gram. Also, because some of the words are not observed in the
GMM, the nal LM is calculated as

P
′

(w|h) =

�
α(h)Ps(w|h) if w ∈ GMLM;
P (w|h) Otherwise.

(8)

where the smoothed LM in equation (6) is basically modi ed as:

Ps(w|h) =
P (w|h)p(y|w)�

v∈GMLM
P (v|h)p(y|v)

(9)

and the normalizing constant α(h) =
�

v∈GMLM P (v|h). While
for the second implementation Equation (7) was used where words
that have their own GMM are considered as their own class.

Table 1 basically shows that the GMLM alone, for both im-
plementations, is only slightly worse than the N-gram. This makes
sense as it is trying to approximate the N-gram by tting Gaussian
mixtures.

6. SUMMARY

In this paper we rst point out two drawbacks of the widely used
N-gram language model that we refer to as Generalizability and

0.01 0.02 0.03 0.04 best

N-gram 33.5 33.1 33.9 34.9 33.1
GMLM 33.7 33.4 34.0 34.8 33.4

GMLM+N-gram 33.9 33.5 33.3 33.2 33.2
GMLM-C 33.8 33.6 34.2 35.0 33.6

GMLM-C+N-gram 34.1 33.6 33.3 33.4 33.3

Table 1: Word error rate (%) when rescoring N-best lists with
GMLM, N-gram, and their interpolation. The results are for dif-
ferent values of acoustic weight used in rescoring. The best value
is given in the last column.

adaptability. We argue that both these problems can be addressed
in a continuous parameter space, and propose to use a Gaussian
mixture language model (GMLM) to address these issues. It is
shown how this model can be used alone or in conjunction with a
a conventional N-gram model to calculate word probabilities. An
interesting feature of the proposed technique is that many methods
developed for acoustic models can be easily ported to GMLM. We
developed two implementations of the proposed model for large
vocabulary Arabic speech recognition. Future work will include
improving the ef ciency of the implementation, developing adap-
tation strategies, and testing on different ASR tasks.
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