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ABSTRACT

Discriminative language models using n-gram features have been
shown to be effective in reducing speech recognition word error
rates. In this paper we describe a method for incorporating discourse-
level triggers into a discriminative language model. Triggers are
features identifying re-occurrence of words within a conversation.
We introduce triggers that are speci c to particular unigrams and
bigrams, as well as “back off” trigger features that allow general-
izations to be made across different unigrams. We train our model
using a new loss-sensitive variant of the perceptron algorithm that
makes effective use of information from multiple hypotheses in an
n-best list. We train and test on the Switchboard data set and show a
0.5 absolute reduction in WER over a baseline discriminative model
which uses n-gram features alone, and a 1.5 absolute reduction in
WER over the baseline recognizer.

Index Terms—Perceptrons, Speech recognition, Natural lan-
guages

1. INTRODUCTION

Previous work on discriminative language modeling [1] has consid-
ered models where the optimal string w

∗ for a given acoustic input
a is de ned as follows:

w
∗ = arg max

w

(β log Pl(w) + log Pa(a|w) + 〈ᾱ, Φ(a,w)〉)

In this approach, a standard language model, Pl, and an acoustic
model, Pa, are used alongside a linear correction term 〈ᾱ, Φ(a, w)〉.1
Φ(a,w) is a feature-vector representation of the pair (a,w), and ᾱ

is a parameter vector of the same dimensionality as Φ(a,w). The
parameters ᾱ are estimated using discriminative methods (e.g. the
perceptron algorithm). Improvements in word error rate (WER) have
been observed by incorporating both n-gram and syntactic features
within Φ(a, w) [1, 2].

In this paper we consider two extensions to the discriminative
language modeling approach. Our rst contribution is to describe a
method for including trigger features [3, 4] within the de nition of
Φ(a,w). Trigger features are designed to model the fact that content
words are more likely to be used repeatedly within a single conversa-
tion than to occur evenly spread throughout all speech. For example
the word “Uzbekistan” may occur very rarely, but within the con-
text of a conversation where it has already occurred, the likelihood
of seeing “Uzbekistan” again increases dramatically. To capture this

1β is a positive constant that determines the relative weight of the lan-
guage and acoustic models. We use 〈x, y〉 to denote the inner product of two
vectors x and y.

phenomenon in our model, a trigger feature can be de ned that in-
dicates the number of times in a conversation that “Uzbekistan” is
seen preceded by a previous instance of “Uzbekistan”. In addition to
lexically-speci c trigger features, we also introduce backoff trigger
features where content words are placed into different equivalence
classes based on their TF-IDF scores [5]. The use of lexicalized trig-
ger features within a generative language model, i.e., a model that at-
tempts to estimate Pl(w), is described in [3, 4]. However, our use of
trigger features in a discriminative language model is arguably sim-
pler and more direct—in particular, the parameter estimation method
is more closely related to optimizing WER.

Our second contribution is to introduce a new loss-sensitive vari-
ant of the perceptron algorithm for the estimation of ᾱ. This percep-
tron is similar in form to that proposed by [7] for multiclass clas-
si cation, however it explicitly models the loss of selecting differ-
ent hypotheses, and also takes into account the fact that multiple
hypotheses may be considered optimal. In contrast to the work in
[1], this perceptron algorithm makes updates based on averaging the
contribution from a larger number of hypotheses, potentially making
much better use of the information in the hypothesis set.

We tested our model on the Switchboard corpus using the rec-
ognizer of [6] and the discriminative language model of [1] as base-
lines. Our model demonstrates a 0.5 absolute reduction inWER over
the model in [1], and a 1.5 absolute reduction in WER over the base-
line recognizer of [6].

2. FEATURES

In this section, we describe how to extend the discriminative model
described above in order to include trigger features in the model. We
will use the following de nitions:

• a1 . . .an represents a sequence of acoustic inputs constitut-
ing a single conversation.

• GEN(ai) denotes the set of n-best hypotheses produced by
the baseline recognizer for the acoustic input ai.

• vi designates the transcription of ai we use to construct his-
tories for identifying triggering events.

• hi = {v1, . . . ,vi−1} is the history of ai.
• Φ(ai,w,hi) is a feature-vector representation. We assume
that the score assigned by the generative model is the rst
feature in this vector (i.e., Φ1(a,w,h) = log Pa(a|w) +
βPl(w)).

• The resulting decoding model is:

w
∗
i = arg max

w

〈ᾱ, Φ(ai,w,hi)〉
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For training ᾱ, we assume that the baseline speech recognizer
can be used to generate an n-best list of candidate hypotheses for any
acoustic input. During training, vi is the least errorful hypothesis
in GEN(ai). During decoding, vi is the best scoring hypothesis
under the generative model for each ai. We also experimented with
de ning vi to be the hypotheses selected while decoding, but this
gave neglible differences in performance.

The baseline discriminative model and our new model both in-
clude the following features. The rst feature is the score assigned by
the recognizer as described above. The remaining features include
unigram, bigram, and trigram features. As one example, a trigram
feature would be

Φ2(a,w,h) = number of times the dog barked appears inw

Similar features are de ned for all unigrams, bigrams, and trigrams
seen in the n-best lists of the training data.

2.1. Trigger Features

We augment the baseline model with trigger features designed to
capture information about the re-occurrence of words. These fea-
tures operate at the discourse level in that they depend upon the
words of the current candidate hypothesis as well as all other words
that have occurred in previous utterances in the conversation. The
unigram trigger features, created for all unigrams seen in the train-
ing data, are of the following form.

Φ3(a,w, h) =

1 iff: (a) Uzbekistan is seen in w at least twice;
or (b) Uzbekistan is seen in w once and is seen at
least once in the history h

0 otherwise

In addition to unigram features, we include bigram trigger features.
For example, we might have a feature that is similar toΦ3 above, but
tests for the bigram San Francisco. Features of this form are created
for all bigrams seen in training data.

Since the above features are lexicalized—i.e., there is a sepa-
rate feature for each distinct unigram or bigram—some may be very
sparse within our training set. To counteract this shortcoming we
introduce a set of backoff trigger features. Each word w in the vo-
cabulary is assigned to one of eleven bins based on its TF-IDF score
[5]. The TF-IDF score is de ned as follows for any word w and
conversation d, where w is seen in d:

score(w,d) = (1 + log(tfwd))(log
n

dfw

)

Here dfw is the number of conversations in which the wordw occurs,
n is the total number of conversations in training data, and tfwd is
the number of times word w occurs in conversation d. The score
for a word w, which we will denote as score(w), is the average of
score(w,d) over all conversations d that contain w. The function
score(w) attempts to measure the degree to which the word w is a
content word (and thus is likely to be a good trigger feature). We
calculated TF-IDF scores for each word seen in the training data,
using the 4,800 transcribed conversation sides in the Switchboard
training set as documents.2

Words are then placed into bins according to their score. Words
with score(w) less than 1.0 are assigned to bin0. All remaining

2Note that we used the reference transcriptions for calculating TF-IDF
scores, as opposed to the outputs from the baseline recognizer.

words are sorted by increasing score and divided into ten equal-sized
bins. In practice bin0 consists of roughly the hundred most common
words in speech (e.g. a, with, go, etc.). Since these words are so
frequent, we anticipate that their trigger features will behave differ-
ently from the other words in the vocabulary. We create the other
ten bins in this graded manner because we anticipate that different
content levels will result in different trigger behavior.

One feature for each bin is then added to the model. Suppose
Φw for any word w in the vocabulary is a trigger feature for that
word (for example, ΦUzbekistan would be de ned as in the example
above). For each binb, for b = 0 . . . 10, we de ne a feature as
follows:

Φb(a,w,h) =
X

v∈binb

Φv(a,w,h)

The feature Φb counts the number of triggering events involving the
words in binb. These features allow the model to learn a general
preference for triggering events involving each of the 11 bins.

3. TRAINING: PERCEPTRON

Figure 1 show the loss-sensitive perceptron algorithm we use for
training ᾱ. This perceptron is similar in form to the perceptrons pro-
posed by [7] for multiclass classi cation and by [8] for reranking.
The perceptron is loss-sensitive in two ways. First, the perceptron
enforces a margin that scales linearly with increases in loss. Sec-
ond, the perceptron recognizes that there may be multiple hypothe-
ses with minimal loss that should all be considered optimal.

In a given n-best list, GEN(ai), there may be one or more opti-
mal hypotheses. For example, the correct transcription may not be
present in the list, but there may be several hypotheses each with
only one error, while all the other hypotheses have two or more er-
rors. We denote the set of lowest error hypotheses of GEN(ai) by
Gi. In terms of performance, all members of Gi are considered op-
timal choices by the discriminative model.

Let Bi = GEN(ai) − Gi, i.e. the set of all non-optimal hy-
potheses in GEN(ai). Each hypothesis in Bi will display different
numbers and types of errors. The following loss function is used to
indicate the badness of each member of Bi:

Δi(b) = edits(b) − edits(g) where g is any member of Gi

This loss function is simply the additional number of errors intro-
duced by a hypothesis over the number of errors present in an opti-
mal hypothesis. Note that all members of Gi have a loss of 0, while
all members of Bi have a loss of 1 or greater.

We de ne a margin that scales as λΔi(b) where λ ≥ 0 is a pa-
rameter we select. Scaling the margin with the loss was originally
proposed by [9], who give statistical bounds justifying this. Intu-
itively, the idea is to ensure that hypotheses with a large number of
errors are more strongly separated from the members of Gi. In the
experiments presented in this paper λ is always set to 1.0. We de ne
the two setsCi ⊆ Gi andEi ⊆ Bi in Figure 1 which consist of opti-
mal and non-optimal hypotheses, respectively, that violate the scaled
margin. We then construct two new vectors

P
c∈Ci

τ (c)Φi(c) andP
e∈Ei

τ (e)Φi(e), which are used to train the perceptron in the
usual way. The values of τ must meet the constraints described in
Figure 1. The rst four constraints insure that the weights used to
create the representative samples are all non-negative and sum to 1.
The nal constraint insures that the newly constructed average sam-
ples still violate the margin constraint in an averaged sense.
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Note that the training examples used as input to the algorithm
are constructed in the following way. a1 . . .am is a sequence of
acoustic representations formed by concatenating all conversations
in the training data. The histories hi are constructed as follows. We
take w

∗
i to be the member of Gi that is scored highest by the gen-

erative model. We de ne the history, hi, for utterance ai to be the
sequence w

∗
i−l,w

∗
i−l+1, . . . , w

∗
i−1 where l is the number of previ-

ous utterances which belong in the current conversation.
There are many methods for selecting the values of τ . In this

paper we consider the following simple de nition:

∀c ∈ Ci,τ (c) =
1

|Ci|

∀e ∈ Ei,τ (e) =
X
c∈Ci

vc(e)

|Ci|vtotal
c

vc(e) =

j
1 if 〈ᾱ, (Φi(c) − Φi(e))〉 < λΔi(e)
0 otherwise

v
total

c =
X
e∈Ei

vc(e)

Essentially all the hypotheses inCi receive an equal positive weight.
The weights of the hypotheses inEi are assigned based on the values
vc(e). If vc(e) is 1 for many correct hypotheses c, τ (e) will be
relatively high.

The more standard perceptron used in the baseline model can be
thought of as a special case of this perceptron in which λ = 0 and
the τ values are assigned as follows. We designate some c′ ∈ Gi

as the single best hypothesis (for the baseline, the hypothesis in Gi

with the best recognizer score). We update only if c′ ∈ Ci. We set
τ (c′) = 1 and τ (e) = 1 where e is the member of Ei for which
〈ᾱ, (Φi(c

′) − Φi(e))〉 is the lowest. All other τ values are set to 0.
We can prove some useful properties for the perceptron in Figure

1. Consider the case where the training data is linearly separable,
or more speci cally there exists some vector U and some maximal
margin δ > 0 such that ||U|| = 1 and the following constraint holds
for all i:

〈U, (Φi(g) − Φi(b))〉 ≥ δΔi(b) ∀b ∈ Bi,∀g ∈ Gi

It can be shown that in a nite number of iterations, given that
the values for τ satisfy the given constraints, the perceptron in Figure
1 learns a model ᾱ that separates the data as follows:3

〈 ᾱ

||ᾱ||
, (Φi(g) − Φi(b))〉 ≥ γΔi(b) ∀b ∈ Bi,∀g ∈ Gi

where γ = λ

2λ+ 4R2

s

× δ, R is an upper bound on the maximum

length of a sample feature vector, and s is the minimum size of the
loss seen on an error. (For our loss function we have s = 1.) Note
that as λ → ∞, γ → δ

2
.

4. EXPERIMENTS

We use the recognizer of [6] as our baseline recognizer (base-G) and
to generate 1000-best lists used by the discriminative models. The
discriminative model used in [1] also serves as a baseline (base-D).
We train the rerankers using Switchboard [10], Switchboard Cellular
[11], and CallHome [12] data. Rich Transcription 2002 (rt02) [13]
data was used for development. Rich Transcription 2003 (rt03) [14]

3For a proof of this result see the appendix in the online version of this
paper.

Input: An integer T specifying the number of training itera-
tions. A sequence of inputs a1 . . .am. A function GEN(ai)
that produces an n-best list of outputs for the input ai. A
mapping hi that represents the history for ai. A function
Δi(w) that represents the loss of selecting output w for the
sample ai. Δi must always be non-negative and there must be
at least one member of GEN(ai) with a loss equal to 0.

De nitions: Gi = {w|w ∈ GEN(ai) and Δi(w) = 0}
Bi = GEN(ai) − Gi

Let Φi(w) be shorthand for Φ(ai,w, hi)

Algorithm:
ᾱ ← 0 λ ← 1.0
For t = 1 to T , i = 1 tom

• Ci = {c|c ∈ Gi and ∃z such that z ∈ Bi and
〈ᾱ, Φi(c) − Φi(z)〉 < λΔi(z)}

• Ei = {e|e ∈ Bi and ∃y such that y ∈ Gi and
〈ᾱ, Φi(y) − Φi(e)〉 < λΔi(e)}

• If |Ci| �= 0, de ne a function τ over Ci ∪ Ei such that
the following constraints hold:

*
P

c∈Ci
τ (c) = 1

*
P

e∈Ei
τ (e) = 1

* ∀c ∈ Ci, τ (c) ≥ 0

* ∀e ∈ Ei, τ (e) ≥ 0

* 〈ᾱ,
“P

c∈Ci
τ (c)Φi(c) −

P
e∈Ei

τ (e)Φi(e)
”
〉 <

λ
“P

e∈Ei
τ (e)Δi(e)

”

Update the parameters:
ᾱ ← ᾱ +

P
c∈Ci

τ (c)Φi(c) −
P

e∈Ei
τ (e)Φi(e)

Output: The parameters ᾱ.

Fig. 1. The perceptron algorithm we propose for reranking speech
recognition output. In our experiments we used the averaged param-
eters from the perceptron, see [1] for details.

data was used for testing. The training set consisted of 5533 con-
versation sides (individual speakers in a conversation), or about 3.3
million words. The development set consisted of 120 conversation
sides (6081 sentences) and the test set consisted of 144 conversation
sides (9050 sentences).

The perceptron trains very quickly, usually converging within
three passes over the training data, and we optimize the exact number
of iterations using the development set. We report results for the
test set only for the baseline models base-D and base-G, and for the
model that produces the best results on rt02.

We tested several combinations of the trigger features and report
results in Table 1. We nd that including all three types of trig-
ger features—unigram self-triggers, bigram self-triggers, and back-
off triggers—gives us the best results on the development set. This
model gives us a 0.4% absolute reduction in WER over base-D and
a 1.2% absolute reduction in WER over base-G on the development
set. This optimal model also achieves a 0.5% absolute reduction in
WER over base-D for the test set and a 1.5% absolute reduction in
WER over base-G. The results on rt03 are signi cant with p < 0.01
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Features rt02 rt03
Base-G 37.0 36.4
Base-D 36.2 35.4
Loss-sensitive perceptron: n-grams 36.0 35.3
+ unigram self-triggers 36.0
+ bigram self-triggers 36.0
+ backoff unigram self-triggers 35.9
+ unigram and bigram self-triggers 35.8
+ unigram and backoff unigram self-triggers 35.9
+ unigram, bigram, and backoff unigram self-
triggers

35.8 34.9

Table 1. Results of base-G, base-D, and our discriminative model
on the development set (rt02) and the test set (rt03).

bin0 0.18 bin4 13.51 bin8 3.61
bin1 6.96 bin5 14.62 bin9 16.00
bin2 12.21 bin6 18.44 bin10 8.76
bin3 13.64 bin7 2.65

Table 2. Weights of bin features in nal model.

using the sign test at the conversation level.
We created several bins for the backoff trigger features with the

expectation that words with different frequencies and content levels
would have different trigger behavior. The learned weights of these
features for the nal discriminative model are listed in Table 2. From
bin0 to bin6 the learned weights increase. This con rms our hypoth-
esis that words with increasing content levels (or bin numbers) are
more in uenced by triggering events. We see approximately a three-
fold increase in weight between bin1 and bin6, suggesting that the
difference in behavior between the words in the two bins is quite
large, and therefore it may be worthwhile to try to create a backoff
scheme that is more sensitive to these differences. Finally, some-
what erratic weights are seen for bin7 through bin10. One reason
for this may be that these are the rarest words in the training set, and
therefore weights for these bins are not adequately trained.

The words which have the 20 highest weights for their associated
unigram trigger features are listed in Table 3. These include content
words such as truck, as well as stylistic words such as gonna. We
posit that words such as gonna get high trigger weights because they
are more heavily used by some speakers than others. Additionally,
we see that some of the words in the list are homonyms of other
words, such as wear and where, wood and would, and weather and
whether. It seems likely that the occurrence of one of these words
earlier in a discourse should make it more likely to see it later and
help distinguish between homonyms.

Finally we see that the perceptron algorithm we present provides
additional gains over the baseline perceptron algorithm. Future work
might consider alternative ways to select the parameters τ as this
might lead to further gains.

5. CONCLUSION

In this paper we use the discriminative language model of [1] to cre-
ate a reranker that includes discourse–level features. Speci cally,
we introduce trigger features that help the discriminative language
model to adapt to discourse context. We use lexicalized and back-
off trigger features that each show individual improvements and to-

GONNA WEATHER WANNA WOOD
OIL WEAR LAKE WAR
ONE’S SOMEONE ICE ALRIGHT
TRUST PARTS TRUCK RIDE
READING SOMEPLACE UH-HUH WOMEN

Table 3. The 20 unigram trigger features with highest weight in the
nal model.

gether make a substantial gain over the baseline model. Addition-
ally we present a perceptron algorithm used to train the discrimi-
native model that shows improvements as well. Overall, the WER
on the test set was reduced by 0.5 over the baseline discriminative
model, and by 1.5 over the baseline recognizer. This work provides
evidence that discriminative language modeling has the potential to
deliver signi cant gains for speech recognition tasks. The success of
the trigger features also shows how important discourse level infor-
mation can be to transcribing spoken language.

6. REFERENCES

[1] B. Roark, M. Saraclar, M. Collins, and M. Johnson, “Discrim-
inative language modeling with conditional random elds and
the perceptron algorithm,” in Proceeding of the 42nd Annual
Meeting of the ACL, 2004, pp. 48–55.

[2] M. Collins, B. Roark, andM. Saraclar, “Discriminative Syntac-
tic Language Modeling for Speech Recognition,” in Proceed-
ing of the 43rd Annual Meeting of the ACL, 2005, pp. 507–514.

[3] R. Lau, R. Rosenfeld, and S. Roukos, “Trigger-based language
models: a maximum entropy approach,” in proc. ICASSP-93,
1993, vol. 2, pp. 45–58.

[4] R. Rosenfeld, Adaptive Statistical Language Modeling: A
Maximum Entropy Approach, Ph.D. thesis, Carnegie Mellon
University, 1994.

[5] G. Salton and M.J. McGill, Introduction to Modern Informa-
tion Retrieval, McGraw-Hill, 1983.

[6] A. Ljolje, E. Bocchieri, M. Riley, B. Roark, M. Saraclar, and
I. Shafran, “The AT&T 1xRT CTS System,” in Rich Tran-
scription Workshop, 2003.

[7] K. Crammer and Y. Singer, “Ultraconservative online algo-
rithms for multiclass problems,” Journal of Machine Learning
Research, vol. 3, no. 4-5, pp. 951–991, 2003.

[8] L. Shen and A. K. Joshi, “Ranking and reranking with percep-
tron,” Machine Learning, vol. 60, pp. 73–96, 2005.

[9] B. Tasker, C. Guestrin, and D. Koller., “Max-margin markov
networks,” in Neural Information Processing Systems Confer-
ence, 2003.

[10] J.J. Godfrey and E. Holliman, “Switchboard-1 release 2,”
1997.

[11] D. Graff, K. Walker, and D. Miller, “Switchboard cellular,”
2001.

[12] A. Canavan, D. Graff, and G. Zipperlen, “Callhome american
english speech,” 1997.

[13] J.S. Garofolo, J. Fiscus, and A. Le, “2002 rich transcription
broadcast news and conversational telephone speech,” 2004.

[14] S. Strassel, C. Walker, and H. Lee, “Rt-03 mdetraining data
speech,” 2004.

IV  28


