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ABSTRACT

In this paper, we propose a novel discriminative training approach to
spoken utterance classi cation (SUC). The ultimate objective of the
SUC task, originally developed to map a spoken speech utterance
into the most appropriate semantic class, is to minimize the clas-
si cation error rate (CER). Conventionally, a two-phase approach
is adapted, in which the rst phase is the ASR transcription phase,
and the second phase is the semantic classi cation phase. In the
proposed framework, the classi cation error rate is approximated as
differentiable functions of the language and classi er model para-
meters. Furthermore, in order to exploit all the available information
from the rst phase, class-speci c discriminant functions are de ned
based on score functions derived from the N -best lists. Our exper-
imental results on the standard ATIS database indicate a notable re-
duction in CER from the earlier best result on the identical task. The
proposed framework achieved a reduction of CER from 4.92% to
4.04%.

Index Terms— spoken utterance classi cation, discriminative
training, automatic speech recognition, statistical language model-
ing.

1. INTRODUCTION

Due to the tremendous progress in automatic speech recognition
(ASR) technology in the past decades, extensive research has been
devoted to its potential commercial applications. Among these, spo-
ken utterance classi cation (SUC), a special form of spoken lan-
guage understanding, has found many practical applications includ-
ing call routing [1], dialog systems and command and control [2].
Whether a speaker is inquiring about ights to a city or reserving
a table at a restaurant, the ultimate objective of SUC systems is to
reduce the classi cation error rate (CER).

Conventionally, a two-phase approach is adapted for SUC task,
in which the rst phase is the ASR transcription phase, and the sec-
ond phase is the semantic classi cation phase. Typically, an in-
domain language model (LM) is trained so that the word error rate
(WER) in the ASR phase is reduced. Once the spoken utterance is
automatically transcribed, the semantic classi cation essentially be-
comes a text classi cation problem. Therefore, reducing errors in
the ASR transcription can improve CER by virtue of providing bet-
ter transcriptions to the classi er. However, it has been reported that
reductions in WER do not necessarily translate into reductions in
CER [3, 4]. More important than WER reduction, the models used
in SUC task should be trained to consistently match the ultimate ob-
jective of CER reduction.

In this paper, we describe a novel discriminative training frame-
work for learning the models used for SUC task, speci cally for
training the language and classi er models. Based on the minimum
classi cation error rate minimization (MCE) principles [5], the CER
is approximated as differentiable functions of the LM and classi er
parameters. The major contribution of this paper is the way the N -
best hypotheses generated by ASR module are used in discrimina-
tive training of the model parameters. More precisely, the proposed
framework associates a score to each pair formed with the sentences
in the N -best list and the semantic classes. This score represents
how likely it is that a sentence yields classi cation of the spoken
utterance into its paired category. These scores also behave as the
class-speci c discriminant functions in discriminative training. We
illustrate the use of the proposed framework on ATIS database. We
observed a signi cant improvement over the earlier best system on
the identical task. Our experiments indicate a CER reduction from
4.92% to 4.04%. These ndings suggest that when WER is below
certain level, the CER attained by using ASR transcriptions can be
lower than the CER attained by using manual transcriptions.

This paper is organized as follows: In Section 2, the proposed
framework for discriminative training of the language and classi er
models using the N -best lists is described. In Section 3, some prac-
tical methods for successful implementation of the proposed frame-
work are discussed. Our experimental results using the ATIS set are
reported in Section 4. Finally, the concluding remarks and future
research directions are investigated in Section 5.

2. A NEW DISCRIMINATIVE TRAINING FRAMEWORK
FOR SPOKEN UTTERANCE CLASSIFICATION

Given a spoken speech utteranceXr and a set ofM semantic classes
C = {C1, ..., CM}, a spoken utterance classi cation (SUC) system
mapsXr into a class Ĉr so that:

Ĉr = argmax
Cr

P (Cr|Xr). (1)

Most practical systems make the assumption that the solution to
this classi cation task is a two-phase process. First, a speech recog-
nizer converts Xr into the best-matching sentenceWr . A classi er,
then, maps Wr to a semantic class Ĉ ∈ C. In most of the con-
ventional SUC approaches, the acoustic and language models of the
rst phase are trained so that the WER in the ASR phase is reduced.
Reducing errors in the automatic transcription can improve CER by
virtue of providing better transcriptions to the semantic classi er.
However, it has been reported that reductions in WER do not nec-
essarily translate into reductions in CER. In many cases, a user’s
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utterance contains multiple salient phrases pointing a single inter-
pretation of the utterance. Therefore, as long as enough words are
recognized to trigger the correct salient phrase, the correct meaning
is assigned to the utterance.

In [3], Wang et al. investigate how good the WER is as an indi-
cator of the CER in SUC systems. Their prominent conclusion is that
the model training criteria that match the optimization objective are
at least as important as reductions in WER. For this reason, in our
framework, the resulting corpus of transcribed word strings is used
not only to train the classi er model but also to train application-
speci c LMs to be used by the ASR module. Hence, our proposed
framework offers better recognition for semantic classi cationmod-
els that optimize the ultimate goal of reducing CER in SUC systems.

2.1. DT Framework Using the N -Best Lists

Suppose thatWr is a sentence with probability P (Wr), and L is the
LM weight. Further, let P (Cr|Wr) denote the probability of map-
ping Wr into semantic class Cr , and P (Xr|Wr) denote the prob-
ability of transcribing Xr as Wr . Then, the classi cation decision
rule given in Eq. (1) can be approximated as follows:

Ĉr = argmax
Cr

[∑
Wr

P (Cr|Wr, Xr)P (Xr|Wr)P (Wr)

]

∼= argmax
Cr

max
Wr∈ℵ

P (Cr|Wr)P
1
L (Xr|Wr)P (Wr). (2)

The approximation in the second line is such that the sentences Wr

are limited to the ones in theN -best list, and the term with maximum
contribution replaces the summation over all possible Wr . Assume
that the semantic classi ers are modeled using the maximum entropy
principle, which yields:

P (Cr|Wr) =
1

Z(Wr)
exp

[∑
i

λifi(Cr, Wr),

]
(3)

where λis denote the classi er parameters, fis denote lexical n-gram
feature functions, and Z(Wr) is a normalization term given by:

Z(Wr) =
∑
Cr

exp

 ∑
i

λifi(Cr, Wr).

)
(4)

Examples of fi are binary bigram features in the following form:

fbigram
c,wxwy

(Cr, Wr) =
1, if Cr = c ∧ wxwy ∈ Wr,
0, otherwise.

P (Xr|Wr) is obtained from the speech lattice by summing up the
acoustic scores of all the paths that yieldWr forXr . LetD(Cr, Wr; Xr)
be de ned as:

D(Cr, Wr; Xr) = log[P (Cr|Wr)P
1
L (Xr|Wr)P (Wr)]. (5)

Then, Eq. (2) can be replaced with its equivalent (logarithmic) form
as:

Ĉr
∼= argmax

Cr

max
Wr∈ℵ

D(Cr, Wr; Xr) . (6)

D(Cr, Wr; Xr) is called the class-discriminant function. D(Cr, Wr; Xr)
shows how likely it is that the sentenceWr yields the semantic class
Cr for given Xr . Therefore, for given Xr , D(Cr, Wr; Xr) serves
as a joint association score between Cr andWr .

In the training stage, the sentenceW 0
r that is most likely to yield

the correct semantic class C0
r is rst extracted based on the D(.)

scores1. This corresponds to:

W 0
r = arg max

Wr∈ℵ
D(C0

r , Wr; Xr) . (7)

Note that the sentenceW 0
r is extracted among all the sentences in the

N -best list. Hence, it is the most likely sentence to yield the correct
decision forXr independent of whether or not it has the most correct
transcription. Furthermore, it is possible to assign the remaining
sentences in the N -best list to different semantic classes in a similar
manner. For n = 1, ..., let Cn denote the set of semantic classes
and ℵn denote the set of the sentences that are not yet assigned. Cn

and ℵn are more formally de ned as Cn = C \ {C1
r , ..., Cn−1

r } and
ℵn = ℵ \ {W 1

r , ..., W n−1
r }, where \ denotes set-difference. The

classes in Cn and the sentences in ℵn are paired with each other by:

Cn
r = arg max

Cr∈Cn
max

Wr∈ℵn
D(Cn

r , Wr; Xr) . (8)

For each Cn
r , the corresponding sentenceW n

r is the term inside the
square-brackets, i.e.,

W n
r = max

Wr∈ℵn
D(Cn

r , Wr; Xr). (9)

This results in T = min{M, N} such (W j
r , Cj

r) pairs. Apparently,
this kind of assignment of sentences in the N -best list to different
classes in C is an effective mechanism for discriminating the sen-
tence in the N -best list that is most likely to yield the correct class
from those that are more likely to yield other (wrong) classes.

Upon de ning the discriminant functions, a class-speci c mis-
classi cation function dr(Xr) and loss function �r(dr(Xr)) are as-
signed to eachXr , where

dr(Xr) = −D(C0
r , W 0

r ; Xr)+log

[
1

T

T∑
n=1

exp[ηD(Cn
r , W n

r ; Xr)]

] 1
η

,

(10)

�r(dr(Xr)) =
1

1 + exp(−αdr(Xr) + β)
. (11)

The loss function �r(dr(Xr)) emulates the classi cation decision
loss for each utterance: When dr(Xr) is very small (or, very large),
the loss of classifying it into the class C0

r is 0 (or, 1). Given the LM
model ΛW , and the semantic classi er model Λλ, the total loss is
then approximated as:

L(ΛW , Λλ) =
∑

r

�r(dr(Xr)) (12)

Being able to approximate the total classi cation loss as continu-
ously differentiable functions of model parameters make it possible
to nd the models that minimize the classi cation loss.

2.2. An Illustrative Example

To clarify our formulation, we next illustrate the assignment of dif-
ferent Cr to different Wr in Table 1. In the training stage, the sen-
tence W 0

r that yields the highest D(.) with the correct class C0
r

(here, GRD_SRV) is rst extracted. Then, the sentence other than

1Throughout our discussion, we reserve the superscript ”0” for the correct
class and its associated sentence, whereas the superscript ”n” is reserved for
the wrong classes and their associated sentences.
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Cr (Class) Wr (Corresponding sentence) D(.)
GRD SRV What is the ground transportation in Atlanta

C0
r :GRD SRV W 0

r :What is the transportation in Atlanta -20.04
C1

r :FARE W 1
r :What is the round trip fare from Atlanta -17.56

C2
r :CITY W 2

r :What is the transportation Atlanta -25.46
C3

r :FLIGHT W 3
r :What is the transportation and Atlanta -28.49

C4
r :FARE BS W 4

r :What is the round trip fare from the Atlanta -27.98
C5

r :AIR SRV W 5
r :What is the transportation the Atlanta -29.09

Table 1. Assignment of semantic classes to sentences along with the corre-
sponding joint scores.

W 0
r that has the highest D(.) with any class other than C0

r is ex-
tracted, which are denoted as C1

r and W 1
r , respectively. Next, the

sentence other thanW 0
r andW 1

r that has the highest D(.) with any
class other than C0

r and C1
r is found. This procedure is repeated un-

til either all sentences in the N -best list or all the classes in C are
assigned. In the test stage, Xr is mapped into the class Ĉr that has
the highestD(.) with any sentence in the N -best list.

In this example, the joint association score of W 0
r with C0

r is
−20.04 . On the other hand, the joint association score ofW 1

r with
C1

r is −17.56. Hence, if Xr were used in the test stage, it would be
assigned to the class Fare, which would imply a misclassi cation
for the spoken utterance,Xr .

2.3. Discriminative Training of LM Parameters

Following the general MCE training principles, the LM probabilities
that minimize the total loss function L(ΛW , Λλ) can be learned by
nding where its gradient vanishes. Doing so results in rules for
updating the lexical n-gram (log)probabilities.

For example, let n(W 0
r , wxwy) denote the number of times the

bigramwxwy appears inW 0
r , and n(W n

r , wxwy) denote the number
of times the bigram wxwy appears in W n

r . Then, for updating the
bigram log probability pwxwy = P (wy|wx), we eventually get:

p(t+1)
wxwy

= p(t)
wxwy

− εLM

∑
r

∂�r(dr(Xr))

∂pwxwy

(13)

= p(t)
wxwy

− εLMα
∑

r

�r(dr)[1 − �r(dr)]
∂dr(Xr)

∂pwxwy

,

where

∂dr(Xr)

∂pwxwy

= −n(W n
r , wxwy) +

N∑
n=1

Hn
r n(W n

r , wxwy). (14)

The weighting coef cientsHn
r are given by:

Hn
r =

exp[ηD(Cn
r , W n

r ; Xr)]∑T
m=1 exp[ηD(Cm

r , W m
r ; Xr)]

. (15)

With a closer look at Eq. (14), it is noticed that when η → ∞, only
the correct (W 0

r , C0
r ) and the most competitive (W 1

r , C1
r ) hypothe-

ses take role in updating pwxwy . The LM parameters corresponding
to the bigrams that are present inW 0

r but not inW 1
r (in the example

above, ”the transportation”, ”transportation in”, ”in Atlanta”) are
increased. In contrast, the LM parameters corresponding to the bi-
grams found inW 1

r but not inW 0
r (”the round”, ”round trip”, ”trip

fare”, ”fare from”, ”from Atlanta”) are decreased. The updates for
the bigrams common to bothW 0

r andW 1
r (”what is”, ”is the”) can-

cel each other, and the corresponding LM parameters are left un-
changed. Similar arguments are valid for other lexical n-grams as
well.

2.4. Discriminative Training of Classi er Parameters

The semantic classi er model parameters λk, k = 1, ..., K, that
minimize the total loss L(ΛW , Λλ) are also learned based on the
MCE principles. We get the following update rules for the classi er
parameters:

λ
(t+1)
k = λ

(t)
k − ελ

∑
r

∂�r(dr(Xr))

λk
(16)

= λ
(t)
k − ελα

∑
r

�r(dr(Xr))[1 − �r(dr(Xr))]
∂dr(Xr)

∂λk
,

where

∂dr(Xr)

∂λk
= ϕ(C0

r , W 0
r ) +

T∑
j=1

Hj
rϕ(Cj

r , W j
r ). (17)

The term ϕk(Cj
r , W j

r ) stands for the derivative of D(Cj
r , W j

r ; Xr)
with respect to λk, and is given by:

ϕk(C
j
r , W

j
r ) =

∂ log P (Cj
r |W j

r )

∂λk

(18)

= fk(C
j
r , W

j
r ) −

∑

C̃

exp
[∑

i λifi(C̃, W j
r )
]

∑
Ĉ exp

[∑
i λifi(Ĉ, W j

r )
] fk(C̃, W

j
r ).

Similarly to the case with the update of LM parameters, when η →
∞, the classi er parameters λk associated with the bigrams that are
present inW 0

r but not inW 1
r are increased. In contrast, the classi er

parameters λk associated with the bigrams that are present in W 1
r

but not in W 0
r are decreased. Those parameters associated with the

same bigrams are left unchanged as before.

3. PRACTICAL ISSUES

3.1. Adjusting the Sigmoid Parameters

One issue that arises is the adjustment of the sigmoid parameters in
the loss function �r(dr(Xr)) in Eq. (11). α is a positive constant
that controls the size of the learning window and the learning rate,
and β is a real number measuring the offset of dr(Xr) from 0. In our
implementation, α is xed at certain value for all classes, whereas βj

is adjusted class-speci cally.
Let φ be such that φ ≥ 0. Let Ω+

j denote the set of all Xr that
belong to the class Cj , and Ω−

j denote the set of all Xr that do not
belong to the class Cj . Also, let Υ+

j denote the set of all Xr ∈ Ω+
j

such that Υ+
j = {Xr : dr(Xr) < φμ+

j }, and likewise, Υ−
j denote

the set of all Xr ∈ Ω−
j such that Υ

−
j = {Xr : dr(Xr) > φμ−

j }.
Then, β for the jth semantic class is set to:

βj =
βpos

j + βneg
j

2
, (19)

where βpos
j and βneg

j are the average dr(Xr) when Xr ∈ Υ+
j and

Xr ∈ Υ−
j , respectively. The idea behind the adapted heuristics is to

associate more loss for those samples for which �r(dr(Xr)) is close
to 0.5. Such samples represent the more confusable examples for the
classi er.

3.2. Stopping Criteria

Optimization theory states that the gradient must vanish in an open
neighborhood of any (local) optimal solution. Hence, the numerical
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Test WER Test CER
Manual Transcription 0.00% 4.81%
ASR Transcription 4.82% 4.92%

Table 2. The performance of the baseline system on text inputs and speech
inputs for ATIS domain. Both the classi er and the trigram LM for ASR are
trained from the in-domain manual transcriptions.

optimization processes formulated in Eqs. (13) and (16) should be
stopped when there is no further change (or insigni cant change) in
the total loss function, L(ΛW , Λλ). A development is used to make
the stopping decision in our numerical optimization implementation.

4. EXPERIMENTS

We used the ATIS database to evaluate the proposed framework with
the same experimental setup as in [6]. ATIS2 and ATIS3 Category
A data are used for training (5798 utterances), ATIS3 1993 and 1994
Category A test set (914 utterances) for testing, and the ATIS3 de-
velopment set (410 utterances) for tuning system parameters and the
stopping criteria as mentioned in Section 3. In our experiments,
we used the recognizer that was provided as part of the Microsoft
Speech API (SAPI) without adaptations to its acoustic model.

4.1. Performance of the Baseline System

The baseline system design [6] rst requires the extraction of the
best-matching sentence Wr for each speech utterance Xr . For do-
ing this, a trigram in-domain LM is trained using the same data
for the automatic recognition of the test utterances. In the second
phase, maximum-entropy classi ers are trained using the manually
transcribed training data. The best-scenario ASR word error rates
(WERs) and classi cation error rates (CERs) for the baseline system
are tabulated in Table 2. These results were the best on this standard
SUC task in the literature prior to the work described in this paper.

4.2. Performance of the Proposed DT Framework using N -best
ASR Transcriptions

We now report the experimental evaluation of our proposed frame-
work. A trigram LM based on n-gram frequencies is used as the
initial LM. We then train an LM as described in Section 2.3. The
classi ers are initialized with classi ers trained with the maximum
entropy criterion. This is followed by the classi er training as de-
scribed in Section 2.4. Note that nding the optimal the LM and
classi er parameters require several ”inner” iterations. Once optimal
solutions are reached for the LM, the resulting LM is fed-back into
the ASR module. This results in new ASR transcriptions and using
these newASR transcriptions, the entire process is repeated, i.e., new
classi ers are trained with maximum entropy criterion, new LMs
are trained, and nally, the classi er parameters are trained with the
training criterion of minimizing the total loss function, L(ΛW , Λλ).
This process is repeated for several ”outer” iterations.

In our experiments, we have set η = 1.0, εLM = 0.001, ελ =
0.03, α = 0.5, L = 1, φ = 0.1. These parameters were experi-
mentally tuned using the development data. The performance of the
the proposed system is summarized in Table 3. We have listed the
WERs and CERs on both the development data and the test data at
each outer iteration. It is rather striking that the CER has been re-
duced from 4.92%, attained by the baseline system using ASR tran-
scriptions, to 4.04%. Furthermore, the CER 4.04% is signi cantly
lower than 4.81%, which was attained by the baseline system with
error-free (manually transcribed) speech utterances. Taken together,

iteration Dev. WER Dev. CER Test WER Test CER
1 7.3% 5.61% 6.2% 4.60%
2 7.2% 5.61% 6.4% 4.38%
3 7.4% 5.12% 6.4% 4.38%
4 7.2% 5.12% 6.3% 4.27%
5 7.3% 4.63% 6.4% 4.04%
6 7.4% 5.37% 6.5% 4.04%

Table 3. The proposed DT framework improves CER improves. Signi cant
improvement over the baseline system is achieved.

the nding in Table 3 indicate that when WER is reduced below cer-
tain level, the CER attained by ASR transcriptions can be lower than
the CER attained by the manual transcriptions.

5. CONCLUSIONS AND FUTUREWORK

In this paper, we described a new discriminative training (DT) frame-
work for spoken utterance classi cation (SUC). The key novelty is
the development of an integrated learning framework for the lan-
guage model (LM) and the semantic classi er model parameters
based on theN -best lists generated in the ASR phase. The parameter
learning is based on the minimization of a smooth approximation of
the classi cation error rate (CER). Our experimental results on the
standard ATIS SUC task revealed the achievement of a signi cant
improvement in CER from the earlier best system on the identical
task.

We have used scores derived from the N -best ASR transcrip-
tions to de ne the class-speci c discriminant functions. The use of
N -best transcriptions is motivated by the fact that the same seman-
tic class is often associated with many variants of spoken utterances.
In order to learn reliable models, we need suf cient data that capture
such variations and their semantic classes. TheN -best transcriptions
provide one such source of data.

One direction of future research is an extension of the current
implementation to the estimation of other system parameters, such
as the HMM and pronunciation model parameters. It is also possible
to extend this approach illustrated in the context of SUC to more
general spoken language understanding tasks, including slot lling
using conditional random elds (CRFs).
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