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ABSTRACT

Level-crossing A/D converters (LCA/D) have been consid-
ered in the literature and have been shown to ef ciently sam-
ple certain classes of signals. In this paper we provide a stable
algorithm to perfectly reconstruct signals of nite rate of in-
novation using level-crossing samples. Furthermore, we also
apply level-crossing sampling to detection of event-arrival sig-
nals.

Index Terms— non-uniform sampling, level-crossing, FRI,
point processes,

1. INTRODUCTION

There is an extensive body of literature on sampling of ana-
log signals [1]. The celebrated Shannon’s sampling theorem
established a uniform sampling method for bandlimited sig-
nals. For non-bandlimited signals, however, no one single
scheme has emerged. An alternative method to uniform sam-
pling, called level-crossing (LC) has been proposed in the lit-
erature in a variety of context [2]-[7]. In this scheme, signals
are level-crossed with a xed set of thresholds and samples
are taken on the time axis. It is a form of nonuniform sam-
pling that lets the signal dictate the frequency of data collec-
tion and quantization: more samples are taken when the signal
is bursty, and less when otherwise. Intuitively, for certain sig-
nals, it is opportunistic to sample this way. As such, we want
to further explore this ef ciency in this paper.
An immediate question follows: What types of signals

are suited for LC sampling? We focus our attention on event-
arrival signals. A typical such signal is composed of scaled
and delayed copies of a known pulse, where information is
carried entirely by the arrival instances. Event-arrival signals
exist in a diverse range of settings from neural spiking activ-
ities, communication signal transmissions, to queueing net-
works. They can be modelled as (deterministic) signals of -
nite rate of innovation (FRI) and (stochastic) point processes.
We will use both frameworks to study the capabilities of LC
sampling.
One such capability is stable reconstruction. Determin-

istic event-arrival signals are well modelled by the class of
FRI signals, which is established by recent work of Vetterli et
al.[8] to have nite number of free parameters per unit inter-
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Fig. 1. The level-crossing sampling scheme of a FRI signal.

val. A class of non-bandlimited FRI signals has been shown
to be recoverable from uniform sampling with the aid of an
annihilating lter. This innovative method however comes
with limits, such that the reconstruction algorithm is unstable
and physically non-realizable. This is addressed in [9], where
a local reconstruction algorithm is proposed. In this paper we
will show that with a properly chosen pre- lter, we can re-
construct a class of such signals perfectly and stably with LC
samples.
Another application that showcases the opportunistic na-

ture of LC sampling is detection of random parameters from a
nite-interval observation. The signals are modelled as point
processes with time-varying and history-dependent conditional
intensity. We will show that for a nontrivial class of event-
arrival signals, level-crossing sampling can guarantee a cer-
tain threshold of performance in less time than uniform sam-
pling.

2. PERFECT RECONSTRUCTION FROM
LEVEL-CROSSING SAMPLES

We consider a typical FRI signal model as in [8]:

x(t) =
K∑

i=1

aiδ(t − ti), 0 ≤ t ≤ T. (1)

x(t) is a stream of K Diracs, where the coef cients {ai}K
i=1

and the time delays {ti}K
i=1 are free parameters. Together

there are 2K unknowns in an interval of T . As such, x(t) has
a rate of innovation r = 2K

T . For the ease of analysis, let x(t)
also have the following properties:
Property 1: The amplitude coef cients ai, 1 ≤ i ≤ K, are
bounded, i.e., 0 < |ai| < ∞.
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Property 2: The Diracs are ε-distinct: infi�=j |ti − tj | >
ε, ε > 0.

2.1. Low-pass lter h

Instead of sampling x(t) directly, we sample the output of
x(t) through a low-pass lter h, as shown in Figure 1, where h
is a causal two-pole system, characterized by amplitude C >
0, decay constant α, and oscillating frequency ωo. Its impulse
response is of the form

h(C, α, ωo, t) = C e−αt cos(ωot)u(t). (2)

The output of the lter is

y(t) =
K∑

i=1

ai Ce−α(t−ti) cos ωo(t − ti)u(t − ti), t ≥ 0.

(3)
We will reconstruct x(t) from LC samples of y(t).

2.2. 2-Level Sampling

The level-crossing A/D (LCA/D) is de ned in two parts, a
level sampler L followed by a quantizer q [7]. Here the L
has two symmetric levels, +l and −l, hence it is an 2-level
sampler. It outputs a sequence of samples, {(sj ,±l)}N

j=1,
where y(sj) = ±l. For now, we assume the crossing in-
stants {sj}N

j=1 are not quantized, so information obtained by
sampling has perfect resolution.
Since LCA/D lets the signal dictate when and where to

sample, samples arrive non-uniformly. Each one establishes
an equation that can be used later to solve for the unknown
parameters and reconstruct x(t):

y(sj) =
k∑

i=1

aih(sj − ti) = ±l, j = 1, 2, · · · , N. (4)

2.3. Criterion for stable reconstruction

Ideally, as long as there are as many equations as unknowns,
namely N ≥ 2K, a solution can be found for (4). Unfortu-
nately, a unique solution is not always forthcoming. First, the
set of equations (4) is neither linear nor can it be decoupled
and transformed into a set of bilinear equations, thus mak-
ing it dif cult to obtain closed-form solutions. Second, the
equations are not convex in {(ai, ti)}N

i=1. Since the number
of local minima grows with the dimension of the unknowns,
nding the optimal solution is nontrivial. These two issues
can easily lead to instability during reconstruction. We will
address this problem in the following theorem.
Theorem 1: For every signal of nite rate of innovation (1),
there exists a lter h(C, α, ωo) and a 2-level L, such that the
level-crossing samples of x ∗ h(t) with L can be used recur-
sively to reconstruct x(t) perfectly and stably. In particular,

the lter’s rate of decay has a lower bound

α >
ln AC

l

ε
, (5)

where A is an upperbound on the amplitudes. In addition, the
threshold l needs to satisfy the following inequality:

l < aiC, 1 ≤ i ≤ K. (6)

Proof : y(t) is a (sequential) stream of K decaying sinusoids
(cosines), where the i-th term is scaled by ai and delayed by
ti seconds. The i-th term alone is only a function of two un-
knowns, namely ai and ti. When K terms are superimposed
together, however, a particular sample y(sj) has global de-
pendence, i.e., y(sj) is a function of all the unknown param-
eters, hence the dif culty in nding a solution. Fortunately,
this can be avoided by a careful selection of lter h.
Without loss of generality, let’s assume C, the amplitude

of the lter, is normalized to 1. Let Δ denote a time duration
that guarantees the amplitude of every decaying cosine in (3)
drops below l afterΔ seconds. In other words,

Δ = {t | t > 0 ; |ai|e−αt < l, 1 ≤ i ≤ K}. (7)

As such, the signal crosses l and produces samples. In order
to localize the information carried by the samples, we want
the samples to be taken before the next cosine arrives, i.e.,
Δ < ε. This is accomplished by picking a value for α that
satis es the following constraint:

α = {v | v > 0 ;
1
v

ln
|ai|
l

> ε, 1 ≤ i ≤ K}. (8)

Since the input is amplitude bounded, then there exists an A,
such that ai ≤ A, 1 ≤ i ≤ K. Combining this with (7) and
(8), we can derive the inequality (5).
Due to the oscillating nature of the lter impulse response

h, each decaying cosine will cross ±l at least twice and pro-
duce, sequentially, at least two equations for each set of un-
knowns (ai, ti). This enables stable reconstruction, as we will
show next.

2.4. Reconstruction algorithm

Let a = [a1a2 · · · aK ]T and t = [t1t2 · · · tK ]T . Let â and t̂ be
estimates of a and t, respectively. The estimated waveform,
using these parameters, is:

ŷ(t) =
K∑

i=1

âih(t − t̂i). (9)

The mean-square-error (MSE) between y(t) and ŷ(t) is de-
ned as r(â, t̂) �‖ y(t) − ŷ(t) ‖2

2. Note that the MSE is a
function of y(t), the dependency on x being implicit. We will
use the notation

minimize r(â, t̂) (10)
subject to y(sj) − ŷ(sj) = 0, j = 1, 2, · · · ,
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to describe the optimization problem of nding a set of (â, t̂)
that minimizes the objective r(â, t̂) among all that satisfy the
constraints. As mentioned previously, the number of local
minima grows with the dimension of unknowns, so nding
the optimal solution is nontrivial. As such, let us formulate
the solution set S∗ [10].
The set of points on which the objective and constraint

functions are de ned is S = R
K × T, where T is the time

interval [0, T ].
Let the optimal value p∗ be

p∗ = inf{r(â, t̂) | y(sj) − ŷ(sj) = 0, j = 1, . . . , N}.
A pair (a∗, t∗) is an optimal solution, if (a∗, t∗) ∈ S and
r(a∗, t∗) = p∗. The set of all optimal solutions is the optimal
set, denoted by

S∗ = {(â, t̂) | y(sj) − ŷ(sj) = 0, j = 1, . . . , N ;
r(â; t̂) = p∗}. (11)

The set S∗ is nonempty, and when it contains only one solu-
tion (â∗, t̂∗), x(t) is reconstructed uniquely. When p∗ = 0,
then x(t) is also reconstructed perfectly.
The key is to realize that the k-th pair of unknowns (ak, tk)

can be solved independently from {ai}K
i=k+1 and {ti}K

i=k+1.
For example, the rst two samples s1 and s2 occur after the
rst cosine is triggered and before the second cosine arrives,
i.e. s1, s2 ∈ [t1, t1 + Δ]. As such,

(â1, t̂1) = {(u, v) |(u, v) ∈ S, u h(t − v)|t=s1,s2 = ±l}. (12)
A unique pair of solutions to a1 and t1 is found by evaluating
(12) with (10), and it then is used to solve the other unknowns
recursively,

(âk, t̂k) = {(u, v) |
k−1∑
i=1

âih(t − t̂i) + uh(t − v) = ±l,

t = sj , sj+1, j ≥ 2k}, (13)
2 ≤ k ≤ K.

3. OPPORTUNISTIC DETECTION

In the previous section, we provided an algorithm for per-
fection reconstruction of FRI signals by LC. In addition, LC
nds itself another important application in parameter detec-
tion and estimation, which will be focus of this section. As
mentioned in the Introduction, we are particularly interested
in signals that can be casted as event-arrival processes, where
the pulse shape (event) is known, but arrivals are unknown.
In a deterministic framework, such signals can be modelled
as FRI, and its counterpart in a stochastic framework can be
modelled as point processes, e.g., poisson processes.
Traditionally, when the pulse shape is known, the opti-

mal detector employed in AWGN setting will be a contin-
uous time (CT) matched lter. However the lter requires

large bandwidth, and so does the discrete time matched lter
obtained from uniform sampling of the CT lter. As such,
they are impractical to implement. This leads us to consider
LC sampling, which offers high instantaneous bandwidth and
samples only when information is present. It is intuitively an
opportunistic, as well as ef cient, allocation of resources. Let
us illustrate with a binary detection example.
Example: The received signal under one hypothesis is the
noise Nt alone; the received signal under the other hypoth-
esis is the signal Xt corrupted by noise Nt. Both Xt and Nt

are poisson random processes with rate λ0 and λ1 over an
interval T respectively:

H0 : Nt ∼ P(λ0), (14)
H1 : Xt + Nt ∼ P(λ0 + λ1).

Assuming both hypotheses were equally likely, given n ar-
rivals in T seconds, the likelihood ratio test (LRT) for maximum-
likelihood (ML) detection is given by

p(n in T |H1)
p(n in T |H0)

≷
′H′

1
′H′

0
1. (15)

Eq.(16) easily translates to a LRT on n,

n ≷ γ(T ), (16)

where the threshold γ(T ) = λ1
ln(1+λ1/λ0)

T . It follows that
the probability of detection and the probability of false alarm
are, respectively, PD(T ) =

∑∞
n=�γ� p(n|H1) and PF (T ) =∑∞

n=�γ� p(n|H0). We are interested to know how fast a de-
tection can be made. In order to quantify this, we rst need
the minimum observation interval.
Question 1: In order to realize a pair (PD, PF ), what is the
minimum observation interval T ?
For any realizable pair (1 − α, β), 0 < α, β < 1, i.e. any

point on the receiver operating characteristic (ROC) curve of
the ML decision rule, we can x PF and nd a T that satis es
PD ≥ 1 − α. The problem can be formulated as such:

minimize T (17)
subject to T > 0, PF (T ) ≤ β, PD(T ) ≥ 1 − α.

Combining (16) and (17), we can nd T by solving the fol-
lowing optimization problem:

min T

s.t. T > 0, (18)
�γ(T )�−1∑

n=0

(λ0T )n

n!
≥ (1 − β)eλ0T , (19)

�γ(T )�−1∑
n=0

((λ0 + λ1)T )n

n!
≤ α e(λ0+λ1)T . (20)
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Note that both left-hand side summations of (19) and (20)
monotonically increase from the value 1. Similarly, the terms
on the right-hand side of (19) and (20) start at 1−β and α re-
spectively, and monotonically increase with T as well. When
(1 − α, β) is realizable, then there exists a T ′′, T ′′ > 0, that
satis es (19) with equality. It follows that the open interval
(0, T ′′] satis es both (18) and (19). When there exists a T ′,
T ′ ∈ (0, T ′′], that satis es (20) with equality, then the closed
interval [T ′, T ′′] is the solution set to (18)-(20). Minimizing
over [T ′, T ′′], we arrive at a solution to the objective function
(17), T ∗ = T ′. In addition, a necessary (but not suf cient)
lower bound on the observation interval is

T ≥ 1
λ0 + λ1

ln
1
α

. (21)

Question 2: With the observation interval T chosen to satisfy
(1 − α, β), how long does it take to make a decision?
The threshold test (15) indicates that we have to wait for

γ(T ) event arrivals in order to make a detection. Let td be the
waiting time until a detection is made. Its distribution f(t; γ)
is Erlang, therefore on average, we have to wait for an interval
of t̄d = E[td] = 1

2 (T + γ(T )
λ0+λ1

).
We say it is opportunistic when a detection can be made

before the expected waiting time, i.e., the time it takes to make
a decision t is less than td,

t < min (t̄d, T ) . (22)

As such, opportunistic detection can be made with probabil-
ity p, where after some grooming, it can be shown to have a
closed form of

p =
∫ t̄d

0

f(t; γ)dt = 1 − e−λt̄d

γ−1∑
i=0

(λt̄d)i

i!
. (23)

Here we identi ed a class of opportunistic Poisson processes
that can be ef ciently sampled by level-crossing.
Furthermore, a broader class of point processes can be

mapped into a unit-rate Poisson process, and analyzed as above.
A point process Xt is a sequence of event arrival times in
[0, T ], with the conditional intensity function λ(t|Xt) that can
be both time-varying and history dependent. Let t1, t2, · · · , tK
be event arrivals in [0, T ], and de ne t0 = 0 and tK+1 = T .
With the mapping zi =

∫ ti

ti−1
λ(t|Xt)dt. it can be shown that

the times {zi}K+1
i=1 correspond to the inter-arrival times of a

unit-rate Poisson process [11]. In other words, the class of
opportunistic signals obtained above not only includes Pois-
son processes , but all point processes for which a detection
can be made before the average wait. As such, this class of
signals is particularly suited to level-crossing sampling.

4. CONCLUSION

We have shown that LC samples can be used to perfectly re-
construct FRI signals. The reconstruction algorithm is also

recursive and stable. In addition, LC can also be used in pa-
rameter detection in event-arrival processes, where we identi-
ed a particular sub-class of signals for which detection can
be made faster using LC sampling.

5. REFERENCES

[1] M. Unser, ”Sampling-50 years after Shannon,” Proceed-
ings of the IEEE, vol. 88, pp. 569-587, April 2000.

[2] A. Zakhor and A. V. Oppenheim, ”Reconstruction of two-
dimensional signals from level crossings,” in Proceedings
of the IEEE, vol. 78, pp. 31-55, January 1990.

[3] N. Sayiner, H. V. Sorensen, and T. R. Viswanathan, ”A
level-crossing sampling scheme for A/D conversion,” in
IEEE Transactions on Sicrcuits and Systems, vol. 43,
no. 4, pp. 335-339, April 1996.

[4] Y. Tsividis, ”Digital signal processing in continuous time:
a possibility for avoiding aliasing and reducing quantiza-
tion error,” in Proc. IEEE Conf. on Acoustics, Speech,
and Signal Proc., Montreal, Canada, May 2004.

[5] F. Aeschlimann, E. Allier, L. Fresquet, and M. Renaudin,
”Asynchronous FIR lters: towards a new digital pro-
cessing chain,” in Proc. 10th IEEE Int. Symp. on Asyn-
chronous Circuits and Systems, April 2004.

[6] F. Akopyan R. Manohar, and A. B. Apsel, ”A level-
crossing ahs asynchoronous analog-to-digital con-
verter,” in Proc. 12th IEEE Int. Symp. on Asynchronous
Circuits and Systems, March 2006.

[7] K. M. Guan and A. C. Singer, ”A level-crossing sampling
scheme for non-bandlimited signals,” in Proc. IEEE
Conf. on Acoustics, Speech, and Signal Proc., Toulouse,
France, May 2006.
K. M. Guan and A. C. Singer, ”A Level-Crossing Sam-
pling Scheme for both Deterministic and Stochastic Non-
Bandlimited Signals,” in Proceedings of Sarnoff Sympo-
sium, March, 2006.

[8] M. Vetterli, P. Marziliano, and T. Blu, ”Sampling signals
with nite rate of innovation,” IEEE Transactions on Sig-
nal Processing, vol. 50, no. 6, pp. 1417-1428, June 2002.

[9] P. L. Dragotti, M. Vetterli, and T. Blu, ”Exact sampling
results for signals with nite rate of innovation using
strang- x conditions and local kernels,” in Proc. IEEE
Conf. on Acoustics, Speech, and Signal Proc., Philadel-
phia, PA, March 2006.

[10] S. Boyd and L. Vandenberghe, Convex Optimization,
Cambridge University Press, 2004.

[11] D. J. Daley and D. Vere-Jones, An Introduction to the
Theory of Point Processes, Springer, 2003.

III ­ 1516


