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ABSTRACT 

 
Calibration of sub-converter mismatches is a challenging task for 
high-performance time-interleaved analog-to-digital converters 
(TIADC). Presently known blind correction methods can remove 
static gain and sampling time mismatches. However, actual sub-
converters significantly deviate from a simple gain-timing model, 
and the resulting modeling error strictly limits maximum output 
signal-to-noise ratio achievable. Generalized mismatch modeling is, 
therefore, necessary to break the limitation of gain-timing model. 
In this paper, we propose a blind method for correcting generalized 
mismatch errors for M=2 TIADC, which is the first in the literature 
to the authors’ knowledge. Cyclostationary spectral analysis shows 
that unique identification is possible in most practical cases. 
Simulation results show significant performance improvement by 
the proposed generalized correction method. 
 

Index Terms— analog-digital conversion, calibration, time-
interleaved, adaptive equalizers, adaptive signal processing. 
 

1. INTRODUCTION 
 
A time-interleaved analog-to-digital converter (TIADC) has a 
parallel structure where a number of sub-converters cyclically 
sample the input signal, and outputs are similarly taken to form a 
digital stream. The overall sampling rate linearly increases with 
the number of sub-converters, and therefore a TIADC is suited for 
high-speed analog-digital (A/D) conversion systems [1].  

It is well known that the spectral performance of a TIADC is 
seriously degraded by sub-converter mismatches. Such mismatches 
create noise sidebands by modulating the input, and eventually 
limit the output signal-to-noise ratio (SNR) or spur-free dynamic 
range (SFDR). Mismatches can be digitally corrected by either 
training [5] or blind methods [2]-[4], [6]-[7]. Training methods are 
suitable for high-resolution applications since they are capable of 
correcting general linear mismatches, but at the cost of system 
suspension during each calibration. Blind methods allow 
uninterrupted system operation and can track slowly time-varying 
errors, but currently known blind methods can only handle static 
gain and timing mismatches.  

The calibration performance of this gain-timing correction 
depends on specific converter hardware and the input signal 
bandwidth. If the TIADC input circuitry and sub-converters have 
high enough bandwidth with no in-band poles or zeros, then the 
static gain and time delay may adequately model a sub-converter. 
If, however, the lowest input pole (or zero) is not sufficiently 

higher than the input bandwidth, the gain and phase response is no 
longer a straight line. As a result, mismatches in the location of 
pole (or zero) between channels will produce nonlinear gain and 
phase mismatch response. If the input circuitry has a bandpass 
nature, the displacement of lower-frequency poles (or zeros) will 
also result complicated mismatch behavior [5]. This modeling 
error is irreducible and acts as residual mismatches, making gain-
timing model inadequate for high-resolution applications. The 
effect of such under-modeled mismatches is more serious with 
wideband input signals [7]. 

It is clear at this point that generalized mismatch correction is 
necessary to break the limitation of simple gain-timing model for a 
higher level of calibration performance. Now, the challenge is how 
to handle the increased number of estimation parameters resulting 
from generalizing correctible mismatches. The blind search 
algorithm will more likely end up at local minima, resulting false 
correction. The pertinent goal is to find a combination of realistic 
constraints and mismatch parameterization such that the blind 
algorithm can uniquely identify a necessary number of mismatch 
parameters under most practical cases. Our blind method is based 
on polynomial mismatch approximation and wide-sense stationary 
(WSS) input assumption. The WSS input assumption is mainly for 
theoretical purpose, however, and in practice the proposed method 
works with most stochastically non-WSS signals as well. We will 
show that this particular combination enables multi-parameter 
estimation and eliminates false correction in most practical cases. 
 

2. SYSTEM CONFIGURATION 
 
A two-channel TIADC system is shown in Fig.1 (a). The sample 
period and frequency of the array is Ts and s=2 /Ts, respectively. 
The analog input x(t) is bandlimited from dc to 0.5 s, and assumed 
to be a real-valued, zero-mean and WSS random process. Fig.1 (b) 
illustrates a linear equivalent model with channel transfer function 
(CTF) H0( ) and H1( ). Any linear filtering effects before A/D 
conversion are lumped into the CTF, including static gain, 
sampling time shift, pole-zero effect, etc. Assuming the bit-
resolution is high, quantization effects are ignored. Normalization 
with respect to the first channel yields Fig.1 (c), where the 
correction digital filters F0(ej ) and F1(ej ) are also shown. This 
normalization clarifies we are interested only in channel 
mismatches, disregarding common linear time-invariant (LTI) 
filtering. There are two justifications for this: first, the LTI system 
does not create distortion sidebands, and second, common filtering 
due to CTF is acceptable in most cases. Now, the normalized CTF 
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H( ) H1( )/H0( ) fully characterizes the general linear 
mismatches between the two channels. 

The system in Fig.1 (c) can be regarded as an M=2 filter bank, 
with analysis and synthesis filter bank equal to the analog and 
digital filters, respectively. The alias component (AC) matrix for 
each bank is then defined as [8] 
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Note that HAC and FAC is a function of p0 and p which is an 
actual and estimated mismatch parameter vector, respectively. The 
perfect reconstruction condition is [8] 

 IFH T
ACAC 2= , (2) 

which means that the entire system in Fig.1 (c) reduces to an LTI 
system with no aliasing error. Equation (2) suggests that the 
correction filter should be designed as 

 ( ) ( )pHpF T
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~,~2~, ωω −=je , (3) 

where HAC is the AC matrix of a hypothetical analysis filter bank 
(assumed to be invertible), 
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H( ) is the estimated CTF parameterized by mismatch estimation 
p. The correction filters can be designed as follows: First, specify 
H( ) using the current estimation p, second, build HAC using (4), 
third, invert it to obtain FAC using (3), and finally obtain the time-
domain impulse response using any conventional filter design 
method (e.g. frequency sampling, least-squares, etc).  
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In (5), IDFT( ) is the inverse discrete Fourier transform operator. 
f0[n]’s and f1[n]’s are correction filter taps, whose combined output 
is the mismatch-corrected TIADC output in Fig.1 (c).  

 
3. CYCLOSTATIONARITY CHARACTERIZATION 

 
A TIADC is a periodically time-varying linear system. Given a 
WSS input, the output is wide-sense cyclostationary (WSCS). If 
there is no mismatch, the output is also WSS. The proposed blind 
method seeks to the following input-output WSS condition: 
assuming a WSS input, adjust the correction filter such that the 
TIADC output restores WSS property. For an M=2 TIADC with 
gain-timing model, the attainment of output WSS condition was 
shown to be necessary and sufficient for actual mismatch 
correction under input WSS assumption [6]. This WSS-based 
framework also proves useful for generalized mismatch model. 
The characterization of WSCS processes in this paper follows the 
convention in [9]. Note that the proposed algorithm is equally 
valid with most practical signals not WSS in a stochastic sense. In 
reality, we rely on time-averaging (rather than stochastic 
expectation) to get the empirical autocorrelation, and therefore 
non-stationary part of the input will be effectively smoothed out, 
unless the input signal has exact phase relationships with the 
sampling clock (e.g. sin( (m/M)fst), m=1,…,M-1 where M is the 
number of TIADC channels).  

The autocorrelation function of the TIADC output y[n] is 
given by Ry[n,n’] E[y[n]y[n’]]. A random process is called WSCS 
if its autocorrelation is periodic with respect to the common shift. 
Note that WSS processes are also WSCS, but not vice versa. The 
TIADC output autocorrelation Ry then satisfies (for M=2), 

 [ ] [ ] nnnnRnnR yy ′+′+=′ , allfor    2,2, . (6) 

If channel mismatch is present, Ry is in general (but not 
necessarily) shift-dependent, 

 [ ] [ ] nnnnRnnR yy ′+′+≠′ , allfor    1,1, . (7) 

If no mismatch, y[n] is WSS and Ry is always shift-independent. 

 [ ] [ ] nnnnRnnR yy ′+′+=′ , allfor    1,1, . (8) 

From (6)-(8), it is readily seen that Ry is completely specified by 
Ry[u,0] and Ry[u+1,1] for all u. Another equivalent representation 
is the so called cyclic correlation function, which is defined as a 
Fourier series coefficient of Ry[n,n’]. For M=2, it is a simple sum 
or difference, 
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Figure 1. M=2 TIADC system model: (a) physical system, (b) equivalent 
system and (c) normalized system with correction filter bank. y[n] and y’[n] 
is corrected and uncorrected output, respectively. 
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Taking Fourier transform of (9), we obtain cyclic spectral 
density (CSD), 
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Note that Ry
1/2[u] 0 and Sy

1/2( ) 0 for WSS y[n]. In this case, 
Ry

0[u] and Sy
0( ) reduces to the conventional autocorrelation and 

spectral density of WSS processes, respectively. Thus, Ry
1/2[u] or 

Sy
1/2( ) provides a measure of how close y[n] is to being WSS. The 

following definition of CSD matrix is useful for TIADC spectral 
analysis. 
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It immediately follows that SY( ) becomes a diagonal matrix for 
WSS y[n]. Let SX( ) be the diagonal CSD matrix for the WSS 
TIADC input x[n] x(nTs). It can be shown that SY( ) has the 
following relationship with SX( ) [9]. 
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4. ALGORITHM DESCRIPTION 

 
Following the previous discussion, we can achieve the input-output 
WSS condition by minimizing the norm of Ry

1/2[u], 
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where popt is the best estimation of mismatch parameters, and Umax 
is the maximum time lag to consider. We have yet to answer an 
important question: Under which conditions does the input-output 
WSS actually guarantee that popt=p0? We begin with Sy

1/2( ), 
Fourier transform of Ry

1/2[u]. From (11) and (12), it is written as 
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We rewrite CTF’s in a polar form, and apply small-mismatch 
assumption to yield 
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Representing each error term in (15) as a Q-th order polynomial, 
we have 
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Thus, p0=(a0 a1 … aQ b0 b1 … bQ)T and p=(a0 a1 … aQ b0 b1 … 
bQ)T. Plugging (15)-(16) into (14), and taking real and imaginary 

part, we can show that, to a first-order approximation, Sy
1/2( ) 0 is 

equivalent to the following matrix-vector equations. 
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where W and coefficient error vectors eg and e  are defined as 
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n’s are F frequency points where either Sy
0( n) or Sy

0( n- s/2) is 
nonzero (hence positive). If W has at least (Q+1) linearly 
independent rows, then the only solution of (17) is eg=0 and e =0, 
which means that popt=p0. Obviously, the input needs to have at 
least (Q+1) spectral tones, and this will enable identification of up 
to 2(Q+1) real-valued mismatch parameters. As the input spectrum 
becomes richer, we are more likely to have at least (Q+1) 
independent rows, guaranteeing unique parameter identification. 
For theoretical purpose, we consider the following assumption: 
The TIADC input has at least (Q+1) distinct spectral tones at n’s, 
such that only one of Sy

0( n) or Sy
0( n- s/2) is nonzero. Under this 

minimal asymmetric tone (MAT) assumption, (17) simplifies to  
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where V is now a diagonally weighted vandermonde matrix, 

 [ ] ( ) m
nnymn S ωω0
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V is nonsingular if and only if n’s are distinct. Therefore, the 
MAT condition strictly guarantees unique mismatch identification. 
The MAT condition is met if the input spectrum has a small 
unoccupied region not in a mirror symmetry across f=¼fs. Since 
the probability of W being singular has zero measure, W will be 
almost always nonsingular even if MAT is not met, as long as the 
input spectrum is rich enough.  

Minimization of (13) can be realized in many different ways, 
although we discussed only its theoretical aspect due to page 
limitation. For example, if given enough computational power, 
exhaustive search can be performed over a single batch of data. 
Otherwise, gradual descent to the minimum over multiple batches 
may also be attempted with reduced computational cost (but with 
slower convergence). Depending on the implementation, 
observation of either corrected or uncorrected output may be more 
convenient than the other (y[n] or y’[n] in Fig.1 (c), respectively). 
 

5. SIMULATION RESULTS 
 
In this section, representative MATLAB simulation examples are 
given to demonstrate the proposed general mismatch correction. 

The M=2 TIADC under simulation has 12-bit resolution, and 
each channel has a single pole around 0.6 s. Mismatch parameters 
are: 3% static gain error, 0.6% sampling time error and 2% pole 
location mismatch. The input signal has three equal-magnitude 
tones at 0.065 s, 0.185 s and 0.405 s. It is readily seen that MAT 
is satisfied with Q up to 2. A single batch of 100,000 uncorrected 
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output samples is first acquired. Its cyclic autocorrelation is 
computed by time-averaging and then passed to minimization 
routine. The minimizer first computes 61-tap correction filters 
using (5) with the current mismatch estimation. Double 
convolution with correction filters is then performed upon the 
uncorrected cyclic autocorrelation to obtain Ry , the cyclic 
correlation of corrected output. Finally, the norm of Ry

1/2 is 
compared with the previous one (Umax=10) and parameter 
estimation is correspondingly updated, completing a single 
iteration. Built-in MATLAB searcher is used for parameter update. 

Two representative mismatch models are tested for 
comparison: conventional gain-timing model and 2nd-order 
polynomial model (Q=2). Fig.2 (a) and (b) each compares the true 
CTF and its estimation with either mismatch model. Dotted lines 
are true magnitude and phase response, where the curvature is due 
to the pole location mismatch. Solid lines correspond to the best 
estimation, which is also the best fit to the true responses weighted 
by the input spectral density. 2nd-order modeling gives a good 
match, and the limitation of gain-timing model is clear. Mismatch-
limited SNR is closely approximated by 1/|H( )-H( )| which is 
plotted in Fig.2 (c). Up to 35dB of improvement is observed as a 
direct result of generalized mismatch modeling. 
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Figure 2. Calibration results from MATLAB runs. (a) Actual and 
estimated CTF using gain-timing model and (b) 2nd-order polynomial model 
(Dotted line: actual CTF response, solid line: estimated CTF response). (c) 
comparison of SNR level after calibration using each mismatch model 

 

8. CONCLUDING REMARK 
 
We have demonstrated that generalized mismatch errors can be 
blindly identified and corrected, achieving significant SNR and 
SFDR improvement (15~35dB), for an M=2 TIADC under realistic 
assumptions. Parameterized filter banks and cyclostationary 
spectral analysis is a key to the algorithm implementation and 
theoretical analysis, respectively. 

Polynomial approximation in polar coordinate has been used 
for the present study, but in principle other parameterizations are 
also possible. The best parameterization will be application 
specific: It will capture the physics of mismatches with a minimal 
number of parameters while systematically avoiding the possibility 
of false correction. Although we focused on A/D conversion 
system, the proposed approach and theoretical framework can also 
be applied to general sampling networks where the sampler 
performance is sensitive to periodic patterning artifacts. 
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