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ABSTRACT

The empirical mode decomposition (EMD) was recently proposed
as a new time-frequency analysis tool for nonstationary and nonlin-
ear signals. Although the EMD is able to nd the intrinsic modes of
the signal and is completely self-adaptive, it does not have any im-
plication on optimality. In some situation, when certain optimality is
considered, we need a more exible signal decomposition and recon-
struction scheme. We propose a modi ed version of the EMD, which
enhances the capability of the EMD. The proposed modi ed EMD
algorithm gives the best estimate to a given signal in the minimum
mean square error sense. Two different formulations are proposed.
The rst one utilizes a linear weighting for the intrinsic mode func-
tions (IMF). The second algorithm adopts a bidirectional weighting,
namely, it not only uses weighting for IMF modes, but also exploits
the correlations between samples in a speci c window and carries
out ltering in the window. These two new EMD methods extend
the capability of the traditional EMD and is well suited for opti-
mal signal recovery. Simulation studies are performed to show the
application of the proposed optimal EMD algorithms to denoising
problem.

Index Terms— Optimal, empirical mode decomposition, signal
reconstruction, denoising

1. INTRODUCTION

The empirical mode decomposition (EMD) is proposed by Huang et
al. as a new signal decomposition method for nonlinear and non-
stationary signals [1]. The EMD decomposes a signal into a col-
lection of oscillatory modes, called intrinsic mode functions (IMF),
which represent fast to slow oscillations in the signal. Each IMF
can be viewed as a certain scale. Traditional signal analysis tools,
like Fourier or wavelet-based methods, require some prede ned ba-
sis functions to represent a signal. The EMD relies on a fully data-
driven mechanism that does not require any a priori known basis. It
has been used to solve many science and engineering problems [2,
3, 4].

The EMD depends only on the data itself and is completely un-
supervised. In addition, it satis es the perfect reconstruction (PR)
property because the sum of all the IMFs yields the original sig-
nal. However, in some situations, when dealing with reconstructing
signal from the IMFs, we do not need all the IMFs so that certain de-
sired characteristics can be achieved. For instance, when the EMD is
used for denoising a signal, partial reconstruction EMD based on the
IMF energy eliminates the noise components [5]. The partial recon-
struction utilizes a binary decision on IMFs, i.e., either discarding
them or keeping them in the partial summation. Such reconstruction

is not based on any optimality conditions. If we are given a signal
and want to approximate the signal by the IMFs obtained from an-
other signal which has some relationship with the given signal, then
an optimal criterion could be set up. In order to approximate the
given signal, we have many choices for operations on the IMFs. A
direct approach is using linear weighting of IMFs. This in turn leads
to our rst proposed optimal EMD algorithm. A second approach is
using weighting coef cients along both vertical IMF index direction
and horizontal temporal index direction. Because of this, the second
approach is named as the bidirectional optimal EMD algorithm.

2. EMPIRICAL MODE DECOMPOSITION

The aim of the EMD is to decompose the signal into a sum of In-
trinsic Mode Functions (IMF). An IMF is de ned as a function with
equal number of extrema and zero crossings (or at most differed by
one) with its envelopes, as de ned by all the local maxima and min-
ima, being symmetric with respect to zero. An IMF represents a sim-
ple oscillatory mode as a counterpart to the simple harmonic function
used in Fourier analysis.

Given a signal x(n), the starting point of the EMD is the identi -
cation of all the local maxima and minima. All the local maxima are
then connected by a cubic spline curve as the upper envelop eu(n).
Similarly, all the local minima are connected by a spline curve as the
lower envelop el(n). The mean of the two envelops is denoted as
m1(n) = [eu(n)+el(n)]/2 and is subtracted from the signal. Thus
the rst proto-IMF h1(n) is obtained as

h1(n) = x(n) − m1(n). (1)

The above procedure to extract the IMF is referred to as the sifting
process. Since h1(n) still contains multiple extrema in between zero
crossings, the sifting process is performed again on h1(n). This pro-
cess is applied repetitively to the proto-IMF hk(n) until the rst IMF
c1(n), which satis es the IMF condition, is obtained. Some stopping
criteria are used to terminate the sifting process. A commonly used
criterion is the Sum of Difference (SD)

SD =
T∑

n=0

|hk−1(n) − hk(n)|2

h2
k−1

(n)
. (2)

When the SD is smaller than a threshold, the rst IMF c1(n) is ob-
tained, which is written as

r1(n) = x(n) − c1(n). (3)

Note that the residue r1(n) still contains some useful information.
We can therefore treat the residue as a new signal and apply the
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above procedure to obtain

ri−1(n) − ci(n) = ri(n), i = 2, . . . , N. (4)

The whole procedure terminates when the residue rN (n) is either a
constant, a monotonic slope, or a function with only one extremum.
Combining the equations in (3) and (4) yields the EMD of the origi-
nal signal,

x(n) =

N∑
i=1

ci(n) + rN (n). (5)

The result of the EMD produces N IMFs and a residue signal.
For convenience, we refer to ci(n) as the ith-order IMF. By this
convention, lower order IMFs capture fast oscillation modes while
higher order IMFs typically represent slow oscillation modes. If we
interpret the EMD as a time-scale analysis method, lower order IMFs
and higher order IMFs correspond to the ne and coarse scales, re-
spectively. The residue itself can also be regarded as the last IMF.

3. OPTIMAL EMPIRICAL MODE DECOMPOSITION

The traditional empirical mode decomposition given in the last sec-
tion is a perfect reconstruction (PR) decomposition because the sum
of all IMFs yields the original signal. Now given a signal d(n), we
want to approximate the signal by some operations on the IMFs. We
could do this in various ways depending on the operators used. A lin-
ear combination of IMFs is one option. By linear weighting IMFs,
we obtain the following estimated signal

x̂(n) =
N∑

i=1

aici(n), (6)

where the coef cients ai is the weight assigned to the i-th IMF and
can take any real value. Note that here for convenience, the residue
term is absorbed in the summation as the last term cN (n). Since our
objective is to approximate the desired signal d(n) by the estimated
signal x̂(n), we utilize the mean square error as the optimization
criterion to nd the coef cients ai’s:

J = E{[d(n) − x̂(n)]2} = E

⎧⎨
⎩

[
d(n) −

N∑
i=1

aici(n)

]2
⎫⎬
⎭ . (7)

The optimal coef cients can be determined by taking the derivative
of (7) with respect to ai and setting it to zero. Therefore, we obtain

∂J

∂ai

= −E

{
2

[
d(n) −

N∑
i=1

aici(n)

]
ci(n)

}
= 0

=⇒
N∑

j=1

ajE{ci(n)cj(n)} = E{d(n)ci(n)}. (8)

Now de ne

pi = E{d(n)ci(n)} (9)
Rij = E{ci(n)cj(n)}. (10)

Therefore, Eq. (8) becomes the following equation

N∑
i=1

Rijaj = pi, i = 1, . . . , N. (11)

The above N equations can be written in a matrix form⎡
⎢⎢⎢⎣

R11 R12 · · · R1N

R21 R22 · · · R2N

...
...

. . .
...

RN1 RN2 · · · RNN

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1

a2

...
aN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

p1

p2

...
pN

⎤
⎥⎥⎥⎦ , (12)

which can be compactly written as

Ra = p. (13)

The optimal coef cients are thus found to be

a
∗ = R

−1
p. (14)

In practice, pi and Rij should be estimated by sample average. The
dimension of the matrixR is N × N . Since the number of IMFsN
is usually a small integer number, the matrix inversion does not incur
any numerical dif culties. The minimum MSE can also be found by
substituting (14) into (7).

Jmin = E

⎧⎨
⎩

[
d(n) −

N∑
i=1

a∗

i ci(n)

]2
⎫⎬
⎭ = σ2

d − p
T
R

−1
p, (15)

where σ2
d = E{d2(n)} is the variance of the desired signal.

From the above formulation, we see that the optimal EMD is
very similar to the optimal ltering (Wiener ltering) which aims to
estimate a desired signal by passing the input through a linear lter.
The difference here is that the OEMD is a signal decomposition and
reconstruction method rather than a ltering method. Two special
cases of the OEMD are remarked as follows. If all the coef cients
ai = 1, then it is equivalent to the original perfect reconstruction
EMD (PR-EMD). If some of the coef cients are set to zero while
others are set to one, it reduces to the partial reconstruction EMD
(PAR-EMD) used in [5, 4]. Therefore, the OEMD generalizes the
traditional EMD and more importantly, yields the optimal estimate
of a given signal in the mean square error sense.

4. BIDIRECTIONAL OPTIMAL EMPIRICAL MODE
DECOMPOSITION

In the EMD, there are two directions in the resulting IMFs. The rst
direction is the vertical direction denoted by the IMF index i in (5).
The vertical direction corresponds to different scales. The other di-
rection is the horizontal direction represented by the time index n
in (5). This direction captures the time evolution of the signal. The
OEMD proposed in the last section only uses the weighting of the
different IMFs, i.e, the weighting is performed in the vertical direc-
tion. Therefore, it lacks degree of freedom in the horizontal temporal
direction. In some circumstances, adjacent signal samples are corre-
lated and this factor must be considered when doing reconstruction.
A more exible EMD algorithm that incorporates the signal correla-
tion among samples in a temporal window is de ned as follows. For
a speci c time n, a temporal window of size 2M + 1 is chosen with
the current sample being the center of the window. At the same time,
a weighting is also employed to account for the interaction between
IMFs. Consequently, 2D weighting coef cients bij are utilized to
yield the estimated signal

x̂(n) =

N∑
i=1

M∑
j=−M

bijci(n − j), (16)
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Table 1. Optimal coef cients of the OEMD algorithm
IMF order i 1 2 3 4 5 6 7 8

a∗

i
0.0652 0.5083 0.8972 0.9852 1.0131 1.0590 0.9249 1.0203

whereM is the half window length. This formulation takes both ver-
tical and horizontal directions into consideration and thus is called
bidirectional optimal EMD (BOEMD). From (16), the bidirectional
weighting of BOEMD can be interpreted as follows. The ith IMF
ci(n) is passed through a FIR lter bij of length 2M + 1. So we
have a lterbank consisting of N FIR lters, each of which is ap-
plied to an individual IMF. The output is the summation of all lter
outputs. Compared to the OEMD, the BOEMDmakes use of the cor-
relation between the samples. We thus have more degree of freedom
in choosing these coef cients to achieve certain desired property of
the estimated signal than the OEMD algorithm. However, the cost
paid for this advantage is the increased computational complexity.

Similar to the OEMD, the criterion chosen here is the mean
square error which is

J2 = E

⎧⎨
⎩

[
d(n) −

N∑
i=1

M∑
j=−M

bijci(n − j)

]2
⎫⎬
⎭ . (17)

Differentiation with respect to the coef cient bij yields

∂J2

∂bij

= −E{2e(n)ci(n − j)}

= −2E

{[
d(n) −

N∑
k=1

M∑
l=−M

bklck(n − l)

]
ci(n − j)

}
= 0.

(18)

It follows from (18) that

N∑
k=1

M∑
l=−M

bklR2(k, i; l, j) = p2(i, j), i = 1, . . . , N, j = −M, . . . , M,

(19)
where we de ne

R2(k, i; l, j) = E{ck(n − l)ci(n − j)} (20)
p2(i, j) = E{d(n)ci(n − j)}. (21)

It can be seen that the correlation in (20) is bidirectional with a
quadruple index representing both IMF order and temporal direc-
tions. There are altogether (2M + 1)N equations in (19) and if
we rearrange the R2(k, i; l, j) and p2(i, j) according to the lexico-
graphic order, we can put (19) into the matrix equation (22). Eq. (22)
can be compactly written as

R2b = p2, (23)

from which the optimal solution b∗ is given by

b
∗ = R

−1

2 p2. (24)

The dimension of the matrixR2 is (2M +1)N×(2M +1)N , so the
computational complexity is increased from O(N3) of the OEMD
algorithm to O((2M + 1)3N3). However, since the BOEMD per-
forms weighting in two directions, it can better capture signal corre-
lation. As in the OEMD case, the elements of the matrixR2 and the
vector p can be estimated by the sample average.

Table 2. Optimal coef cients of the BOEMD algorithm (M = 1)
b∗
ij

IMF order i
1 2 3 4 5 6 7 8

-1 0.0070 0.3194 1.2685 2.3996 -0.0926 11.4145 19.5583 -351.5546
0 0.0304 -0.1233 -1.4363 -3.4693 1.6909 -22.7874 -37.9130 701.6147
1 0.0169 0.3663 1.2500 2.4258 -0.5807 12.5960 19.3919 -349.1916

5. APPLICATIONS

As we have proposed the OEMD and BOEMD algorithms, we can
use them for various applications. One application considered here
is signal denoising. Suppose we are given a noisy observation. The
goal is to remove the noise components in the signal so that the de-
noised signal x̂(n) is as close to the original noise-free signal xo(n)
as possible. The following example shows the denoising using the
OEMD and BOEMD algorithms and compares them with the partial
reconstruction EMD (PAR-EMD) in [5]. The denoising method by
PAR-EMD is based on the IMF signal energy and the reconstructed
signal is given by the partial summation of those IMFs whose energy
exceeds the threshold.

The original signal is a moving average of order 10 (MA(10))
process. Additive Gaussian noise with variance 0.0066 is added to
the signal so that the SNR=10 dB, where SNR is de ned as the ra-
tio of signal power and noise variance. The total signal length is
1200 and the rst 1000 samples are used as the desired signal d(n)
to estimate the OEMD and BOEMD coef cients ai’s and bij’s in (6)
and (16). Once these coef cients are determined by the algorithms,
the remaining non-training samples are tested for denosing perfor-
mance. The denoised signal is obtained by substituting the optimal
coef cients into the reconstruction formulae (6) and (16). Since the
OEMD and BOEMD are supervised algorithms, we need a desired
signal to train the algorithms. However, as long as the chosen de-
sired signal has the same statistical characteristics as the underlying
signal, we can always achieve optimal denoising performance. In
the following, the denoising performance is evaluated by the mean
square error given by

MSE =
1

L2 − L1 + 1

L2∑
n=L1

[xo(n) − x̂(n)]2, (25)

where L1 and L2 are starting and ending indices of non-training
samples, and xo(n) and x̂(n) are original noise-free and denoised
signals, respectively.

In the following, the signal memory M in the BOEMD is cho-
sen to be 1. Eight IMFs are obtained after the EMD decomposition.
Hence, the total number of coef cients ai is 8 and the total number
of coef cients bij is 24. The optimal coef cients a∗

i and b∗ij obtained
by the OEMD and BOEMD are listed in Table 1 and 2, respectively.
It can be observed that the rst several weighting coef cients for the
OEMD are less than 1 but as the IMF order increases, the coef -
cients ai’s also increase to some values close to one. The result is
also in agreement with that of the PAR-EMD that the lower-order
IMFs contain more noise components than the higher-order IMFs.
Consequently, lower-order IMFs should be assigned small weights
in denoising. The BOEMD coef cients contain both positive and
negative numbers, which is a result of subband ltering.

The denoising results are shown in Fig. 1 where we also show
the result of the PAR-EMD algorithm. The noisy signal is shown in
Fig. 1(a) in which non-training samples from 1000-1200 are shown.
Figs. 1(b), 1(c), and 1(d) show the denoised signals reconstructed
by the PAR-EMD, OEMD and BOEMD, respectively and compare
the resulting signals with the original signal. It can be seen that the
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⎡
⎢⎢⎢⎣

R2(1, 1;−M,−M) R2(1, 1;−M + 1,−M) · · · R2(N, 1; M,−M)
R2(1, 1;−M,−M + 1) R2(1, 1;−M + 1,−M + 1) · · · R2(N, 1; M,−M + 1)

...
...

. . .
...

R2(1, N ;−M, M) R2(1, N ;−M + 1, M) · · · R2(N, N ; M, M)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b1,−M

b1,−M+1

...
bN,M

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

p2(1,−M)
p2(1,−M + 1)

...
p2(N, M)

⎤
⎥⎥⎥⎦ . (22)
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Fig. 1. Denoising using different kind of EMD. Shown in dash-
dotted lines are the original signal and the solid lines are denoised
signals. (a) Noisy signal, (b) denoising by the PAR-EMD, (c) de-
noising by the OEMD, (d) denoising by the BOEMD.

OEMD and BOEMD produce signals closer to the original signal
than that of the PAR-EMD. However, the BOEMD performs slightly
better than the OEMD since the residual error is smaller. The reason
is that the BOEMD takes the signal correlation into account. Calcu-
lating the MSE by (25), we nd the MSE for these algorithms are
0.0053 for the PAR-EMD, 0.0024 for the OEMD, and 0.0015 for the
BOEMD, which again shows the relative goodness of these different
EMD algorithms.

A more thorough study using a wide range of different realiza-
tions of stochastic signals is carried out by Monte Carlo simulation.
Fig. 2 shows the MSE versus SNR for the three EMD algorithms:
PAR-EMD, OEMD, and BOEMD. At each SNR, 500 runs are per-
formed to obtain an averaged MSE as shown in the gure. We see
that the OEMD and BOEMD algorithms outperforms the PAR-EMD
in the entire SNR range. Except for low SNR, the performance of
the BOEMD is better than that of the OEMD as expected.

6. CONCLUSION

The empirical mode decomposition is a tool for analyzing nonlinear
and nonstationary signals. Conventional EMD, however, does not
warrant any optimality conditions. In this paper, several novel EMD
algorithms that are optimal in the minimum mean square error sense
are proposed. The rst algorithm, optimal EMD, estimates a given
signal by linear weighting of the IMFs. The coef cients are deter-
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Fig. 2. MSE vs. SNR for three different denoising algorithms

mined by solving a set of linear equations. To consider the temporal
structure of a signal, a bidirectional optimal EMD is then proposed.
The weighting of the BOEMD is carried out not only in the IMF
scale direction, but also in the temporal direction. It is able to com-
pensate for the time correlation between adjacent samples. An appli-
cation of the proposed algorithms to signal denoising demonstrates
that both the OEMD and BOEMD have better performance than the
traditional partial reconstruction EMD. In addition, the BOEMD im-
proves the performance of the OEMD further.
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