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ABSTRACT 

In many applications such as signal integrity checking of 
hardware prototypes or determining dynamic behavior of 
wideband amplifiers etc. analysis of periodic radio signals 
with high accuracy is desired. The straight forward ap-
proach is to sample the signal to be analyzed with twice its 
highest harmonic content. But as fundamental frequencies 
are often far into the MHz range its harmonics may well 
span into the upper MHz or even GHz range. This leaves 
two possibilities: First, obey the sampling theorem and sam-
ple at that rate. But ADCs able to sample in the GHz range 
are expensive, power hungry and offer 6 to 8 bits maximum. 
Sometimes, this is not an option at all. Second, try to live 
with under sampling accepting alias frequencies in base-
band. As long as aliased harmonics do not overlap this pre-
sents an acceptable solution. If they overlap, however, noth-
ing can be done once the signal is sampled. But there is one 
more option presented in this paper, namely the possibility 
of deliberate nonuniform sampling. If the sampling set is 
chosen in a convenient way, mostly offered by an additive 
random sampling (ARS) scheme, this opens up promising 
possibilities to extend the alias–free processing range into 
the far MHz or even GHz region.  

Index Terms— Nonuniform sampling, alias–free signal 
processing, least squares methods, radio signal processing, 
sampling methods  

1. INTRODUCTION 

Material presented in this paper is based on two concepts. 
First, the theory of sampling a signal nonuniformly a way 
that aliases are suppressed by the sampling process  
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Here n  represents the t nth sampling instance, a random 
variable, and ( )s  designates a particular realization out of 
the set  of possible productions. In practice the number 
of samples taken  is bounded. The theory of sampling 
processes is extensively covered in [1] and [2] and it is 
shown in [2] that especially ARS is very effective 
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in suppressing aliases. Therefore, an efficient hardware ar-
chitecture has been designed realizing an ARS sampling 
driver (SD) for sampling radio signals nonuniformly. We 
use an inter–sample period stretching uniformly from clkT  to 

 with clk2 clkT f  being the clock rate of the SD. An efficient 
algorithm for sampling instant placement allowing for sim-
ple hardware realizations was introduced in [7] and is used 
to create the results presented here.  

Second, the IEEE–STD–1057 four–parameter fitting 
algorithm [4]. Given a set of uniform samples this algorithm 
describes how the four parameters: amplitude, phase, DC 
offset and most importantly frequency of a sinusoid can be 
estimated based on an iterative least squares (LS) fit. Itera-
tive, because the problem is nonlinear with respect to the 
frequency parameter estimation. An excellent description of 
the algorithm is found in [3].  

When processing high frequency periodic signals (i. e. 
GHz range) harmonic content can often not be neglected 
due to signal impurities. Therefore the signals spectrum 
spreads much wider than the fundamental frequency. In 
such cases applying a four parameter fit delivers biased re-
sults. This was already discovered by Pintelon [9]. But Pin-
telon only considered uniform sampling. His analysis there-
fore suffers from potential alias overlap. We extend results 
obtained in [3] and [9] to nonuniform sampling sets. Also, 
in contrast to [3] not a pure sinusoid is being considered but 
rather any periodic, bandlimited signal with as much har-
monics as fit into the digital alias–free signal processing 
(DASP) bandwidth DASPB  (cf. Fig. 1) determined by time 
quantum , with qT 1 (2 )DASP qB T .  

2. SIGNAL MODELLING  

Assume a particular realization of  did produce 
tuples 

( )( , tss )
,n nt x  of nonuniform sample times and associated 

signal values. The signal may be modeled by  
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were 1compN  is the number of modeled harmonics, xf  is 
the fundamental frequency and ,  represent the ,n evc ,n odc nth 
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even or odd spectral coefficient, respectively. Clearly, in 
case of a pure sinusoid (3) simplifies into  
 0  cos 2 sin 2ev x od x x t c c f t c f t . (4) 

3. MODEL FITTING ALGORITHM 

Starting with the sinusoid case given in (4) and assuming 
that the signals frequency is known it is shown in [3] that 
the parameter vector  is obtained by  0ˆ ˆ ˆ ˆ( T

ev odc c cc )
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(where  2x xf ) referred to as three–parameter fit in [4]. 
Note that the LS fit (5) works for uniform and nonuniform 
data sets. Surprisingly this was never stated explicitly but is 
important for the considerations in this paper. In practice xf  
is not known exactly and to obtain most accurate results xf  
must also be estimated! This leads to a four–parameter fit 
with vector  creating a nonlinear 
problem. Since 

0
ˆˆ ˆ ˆ ˆ( T
x ev odfc c cc )

( )x t  is known at sampling times {  it can 
be approximated by a Taylor series using  

}nt
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were ˆ
x x x
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which is still a nonlinear posed problem due to ev  and odc  
occurring in the corner bracket expression of 

c
(8). However, 

assuming further that close estimates  and ˆev evc c ˆod odc c  
exist, (8) can be rewritten as  

 0
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which renders problem (5) into a linear one. How close es-
timates can be determined is explained below. Note that by 
using (9) the search for vector  has 
turned into a search for  instead. This 
is not a problem because 

0
ˆˆ ˆ ˆ( )T
x ev odfc c c

0
ˆˆ ˆ ˆ( )T
x ev odfc c c
ˆ

x x xf f f . But since we only 
have the estimate x̂f , parameter fitting turns into an itera-
tive search with , , 1 , 1

ˆˆ
x i x i x iff f  and (5) as well as (6) 

have to be applied repeatedly with updated parameter sets. 
The ith iteration parameter vector is referred to by 
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With iteration index i estimation matrix  becomes  
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The considerations made so far are applicable in case of 
a periodic signal (3) too. Harmonics being integer multiples 
of xf  approximation only needs to take into account the 
adaptation to the fundamental frequency xf . Thus the ith 
iteration vector turns into  

0, , 1, , 1, , , , , ,
ˆˆ ˆ ˆ ˆ ˆ ˆ

T

comp compi i x i ev i od i N ev i N od ic f c c c cc . (12) 

Similarly the ith estimation matrix  is obtained by  i
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Fig. 1: Traditional undersampling a) versus DASP–sampling b) 
avoiding aliasing. Processing bands may be chosen such that arbi-
trary periodic signals can be analyzed.  

ff f  and ˆ
xf  is an estimate close to the actual 

signal frequency. Inserting (7) into (4) delivers  
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Fortunately the approximation procedure to arrive at the  final result remains the same thus the approximation algo-
rithm can be summarized as given in Tab. 1. 
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Fig. 2: Fitting of a rect–like signal generated by a PHILIPS PM5786B pulse generator. Estimated fundamental period xT  is 19.1 ns. 
Measurement interval is 10.24 s, thus, 534 signal periods were used for curve fitting. Number of nonuniform samples is nu . 
Shown are a) the nonuniform samples mapped into the fundamental period and b) the zero filled FFT spectrum as well as the grid 
search results along with the parameters obtained with the last iteration step (power values). 

679N

Zero filled FFT (cf. [8]) to get fundamental 
component parameters ,  and ˆevc ˆodc x̂f  

init The heuristic threshold  is subject to change with the 
analysis setup as it depends on factors like SNR and number 
of samples used in calculations. Therefore, no fixed value 
can be given and  has to be chosen according to the meas-
urement task at hand.  

Use x̂f  constructing initial frequency grid 
search matrix init  (see Section 4). Use (5) to 
find initial estimate parameters ,  … 

, c . 
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0i 4. FINDING INITIAL ESTIMATES 

Finding initial estimates of (12) close to the true coefficients 
is vital for fast convergence. It is more involved for the non-
uniform than in the uniform case. This is the prize to be paid 
for alias–free processing.  

We use a two step method: First, a zero stuffed (as op-
posed to zero padded) FFT is applied to obtain first phase, 
amplitude and frequency estimates of the fundamental fre-
quency (cf. [8]). The harmonics usually drown in noise at 
this point since the spectral dynamic range is about 20 dB 
(comprehensive simulations are found in [10]). To obtain a 
complete set of estimates we perform a frequency grid 
search. A matrix init  similar to (13) but without xf  terms 
is constructed for frequencies near the expected fundamen-

x

0 1, ,0 1, ,ev

Use 
0  

(13) to construct  
1) WHILE ˆ

xf DO

2)  ,   T 1
1ˆ ( )i i ic xi , 1 1

ˆ ˆ 1x i if c   
3)  , 1 , , 1

ˆ ˆ ˆ
x i x i x if f f   

4)  Use (13) to build  with  and 1i 1ˆ ic , 1
ˆ

x if   
5)    1i i
 NEXT

 Result is in  ˆ ic

Tab. 1: Periodic signal fitting using nonuniform sampling sets. 
Note:  indicates assignment. 
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tal as well as the harmonics using FFT grid frequencies. 
This is shown in Fig. 2b. We use 10 grid points around 
every bin we suspect to be part of the signal. This is done 
throughout the alias–free range [0,1 (2 )]qT . Construction of 
such matrixes is well presented in [5]. Our hardware realizes 
a time quantum of 625 ps. So we search in the range DC … 
800 MHz. With matrix init  we perform a LS fit (5) to ar-
rive at estimates to seed initial vector 0  with. This vector is 
used in the algorithm described in 

ĉ
Tab. 1 for further pa-

rameter refinement.  

5.  PRACTICAL RESULTS  

To verify our proposed algorithm in an actual radio signal 
processing system we collected nonuniform samples with 
our prototype hardware. The prototype features two sam-
pling channels with an AD9433 (12 Bit). We use channel–A 
only here. The mean sampling rate mf  is 66 MHz. The ana-
logue input bandwidth ADCin  of the converters is 750B  MHz 
so they are well suited for undersampling or application of 
DASP, respectively. The analyzed signal was delivered by a 
PHILIPS PM5786B pulse generator. A representative ex-
cerpt of our results is depicted in Fig. 2.  

The mapping of all nonuniform samples into fundamen-
tal period xT  becomes possible only after accurate determi-
nation of xT ! The error between mapped samples and the 
signal model (3) is given by  

  (14) 
2

n ne t x t xn

t t Twith x . It is depicted in Fig. 2a. As expected it 
is largest at steeper parts of the signal reflecting the fact that 
sampling time placement errors surface mainly at steep parts 
of the signal.  

modn n

We analyzed up to the 13th harmonic. Given the esti-
mated fundamental of 52.2 MHz this means a total band-
width of 730.8 MHz. Traditionally, a sampling frequency of 
1.5 GHz is needed to obtain this processing bandwidth. This 
is a maximum requirement. It is inefficient because much 
more information is collected than required. Why? Because 
the signal is present only in very isolated parts of the spec-
trum. It therefore contains much less information. Our 
method utilizes this fact and brings the (average) sampling 
rate down to 66 MHz. Thus, much less information is gath-
ered per time interval, yet, still enough to reconstruct the 
original signal (indicated in Fig. 1b). This is why we refer to 
our method as efficient rate nonuniform sampling.  

With our measurements we obtain convergence after 
five iterations. A threshold 30 Hz suffices in our case.  

6. CONCLUSIONS 

The application of deliberate nonuniform sampling to peri-
odic signals leads to efficient sampling sets whose density is 
matched far better to the signals’ information rate than a 

brute force approach using a sampling rate ,2s h maxf f , 
,h max  being the maximum harmonic considered for signal 

analysis. A different approach for radio signals was sug-
gested in [9] using undersampling accepting aliases. If ali-
ases overlap, this method fails. Our solution avoids this 
problem by using sets of nonuniform samples designed es-
pecially for alias suppression. ARS has proven very effec-
tive in this regard.  

f

Although we have tested this method up to frequencies 
of 800 MHz it is applicable to much wider bands. A time 
quantum as small as 10 ps (cf. [6]) would open up a direct 
digital alias–free processing range as far as 50 GHz with this 
methodology.  
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