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ABSTRACT

This paper explores the use of discrete-time randomized sampling
as a method to mitigate the effects of aliasing. Two distinct sam-
pling architectures are presented along with second-order character-
izations of the resulting sampling error. In the rst, denoted simple
randomized sampling, non-white sampling processes are shown to
frequency-shape the error spectrum, so that its power is minimized
in the band of interest. The design of non-white binary processes for
use in randomized sampling is considered. In the second model, de-
noted ltered randomized sampling, a pre- lter, post- lter, and the
sampling process are used to achieve a similar effect. In both cases,
optimal mean-squared-error solutions are derived. Results from sim-
ulation are shown.

Index Terms— randomized sampling, non-uniform sampling,
LTI reconstruction, noise-shaping

1. INTRODUCTION

Randomized sampling can be used as an effective technique to mod-
ify the impact of aliasing. With periodic sampling, if the input signal
is sampled below its Nyquist rate, aliasing occurs. Though an anti-
aliasing lter can be used, it imposes a severe restriction on the range
of frequencies that can be represented. In addition, in certain appli-
cations, like ray-traced computer graphics, anti-aliasing lters are
impossible to implement, [1]. With randomized sampling, the error
due to undersampling corresponds approximately to wideband noise
that is uncorrelated with the input signal, [2]. In perceptual applica-
tions such as audio and imaging, the distortion from this wideband
noise is often preferable to aliasing artifacts, [3, 1, 4].

Most literature on randomized sampling considers a randomiza-
tion of the sampling process in continuous-time [5]. By contrast,
in this paper, randomized sampling is modeled as a discrete-time
(DT) down-sampling process. The formulation follows the random-
ized down-sampling framework presented in [2]. In this paper, we
extend the white randomized down-sampling models of [2] to non-
white randomized down-sampling models which can further reduce
the error due to undersampling.

The techniques presented in this paper have potential applica-
tions in contexts where there are limitations on an analog-to-digital
converter (ADC). For example, in wideband surveillance, the maxi-
mum sampling rate of an ADC might be below the Nyquist rate for
signals of interest. In this context, randomized sampling can be used
to algorithmically extend the effective bandwidth of the ADC. As
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another example, for low power applications such as sensor network
nodes, sampling consumes a large portion of the power. In this case,
randomized sampling can be used to reduce the sampling rate, and
correspondingly the power consumption.

2. RANDOMIZED SAMPLINGMODELS

For an LTI system with a wide-sense stationary (WSS) input, x[n],
and a deterministic impulse response, h[n], DT randomized sam-
pling is de ned as the process of randomly setting some of the sam-
ples of x[n] to zero. In this paper, we consider two form of DT
randomized sampling. The rst, denoted simple randomized sam-
pling (SRS), does not incorporate pre and post- ltering as illustrated
in Fig. 1(a). The second, denoted ltered randomized sampling
(FRS), has a user-de nable pre- lter and post- lter as illustrated in
Fig. 1(b).

In both cases, randomized sampling is represented as multipli-
cation with a binary WSS process, r[n] = {1, 0}, that is statistically
independent of the input x[n]. The resulting DT signal is thus on
the same sampling grid, but with many samples set to zero. Note
that this model implicitly preserves knowledge of the sampling in-
dices upon reconstruction. This is in contrast to a fully randomized
scheme where the sampling indices are unknown at reconstruction.

The xed LTI lter h[n] represents a frequency-dependent er-
ror weighting, denoting frequency bands of interest with high values
and less important bands with low values. In certain contexts, h[n]
can be interpreted as a reconstruction lter. For example, in audio
and imaging, h[n] can represent a model of human perception. In
other contexts, like multi-carrier communications, h[n] can be used
to model frequency-dependent SNR requirements.

The average sampling rate is assumed to be xed. Mathemati-
cally, this xes the mean of r[n] to a particular value, E {r[n]} = μ.
Since r[n] is a binary process, this constrains the variance to be,

σ2
r = μ(1− μ) (1)

In addition, the input power spectrum, Sxx(ω), is assumed to
be known a priori. This makes the randomized sampling process a
form of data-dependent sampling, where an a-priori characterization
of the signal of interest is used to tune the sampling.

In SRS, the goal is to design a non-white sampling process, r[n],
subject to certain constraints, such that the reconstruction ŷ[n] is
as close as possible to y[n], the desired output without randomized
sampling. y[n] is de ned as,

y[n] = μx[n] ∗ h[n] (2)

Note that to make a fair comparison, y[n] has been scaled by
the mean, μ, of the sampling process. This accounts for the loss of
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Fig. 1. Block diagrams for two models of randomized sampling.

energy due to sampling. The mean squared error (MSE), de ned
in Eqn.(3), is used as an error metric. Section 3 analyzes the SRS
model in detail.

E = E
˘
e2[n]

¯
= E

˘
(y[n]− ŷ[n])2

¯
(3)

FRS is analogous to SRS, except that there are three design pa-
rameters, the pre- lter g1[n], the post- lter g2[n], and the sampling
process r[n]. Section 4 analyzes the FRS model in detail.

3. SIMPLE RANDOMIZED SAMPLING

In SRS, the sampling process, r[n], can be decomposed into the sum
if its mean and a zero-mean random process, r0[n],

r[n] = μ + r0[n] (4)

where r0[n] = {(1−μ),−μ}. Using this decomposition, the output
of randomized sampling can be expressed as,

z[n] = μx[n] + x[n]r0[n]| {z }
w[n]

(5)

Though w[n] is a function of x[n], it is statistically uncorrelated
with x[n], i.e. the cross-covariance Kxw[m] = 0. The output, ŷ[n],
can be expressed as,

ŷ[n] = μy[n] + e[n] (6)

where e[n] = w[n] ∗ h[n], a zero-mean additive error uncorrelated
with y[n]. The PSD of e[n] can be expressed as,

See(ω) = |H(ω)|2
j

1

2π

Z π

−π

Sxx(θ)Φrr(ω − θ)dθ

ff
(7)

where Φrr(ω) is the covariance spectrum of r[n]. The integration
corresponds to circular convolution with period 2π. The MSE is
found by integrating Eqn. (7),

E =
1

4π2

Z π

−π

Z π

−π

|H(ω)|2Sxx(θ)Φrr(ω − θ)dθdω (8)

In the randomized sampling model of [2], which we denote as
white SRS, r[n] is assumed to be an IID Bernoulli process. In
this model, the auto-covariance is Krr[m] = σ2

rδ[m] and the error
power spectrum simpli es to,

See(ω) = σ2
rKxx[0]|H(ω)|2 (9)

The error thus has a at power spectrum shaped by the lter
h[n].

3.1. Non-White SRS

By allowing correlations in r[n], the error spectrum can be shaped so
that its energy in the band of interest is reduced. Mathematically, the
goal is to ndΦrr(ω), that minimizes the objective function Eqn.(8).
There are three important constraints onΦrr(ω). First,Φrr(ω)must
be a valid covariance spectrum, i.e. real, non-negative, and symmet-
ric. Secondly, since μ is xed, Eqn.(1) constrains the total area,

1

2π

Z π

−π

Φrr(ω)dω = σ2
r = μ(1− μ) (10)

Furthermore, Φrr(ω) must be achievable by a binary process.
Changing the order of convolution in Eqn.(8) the optimization can
be formally de ned as,

min
Φrr(ω)

j
1

4π2

Z π

−π

Φrr(ω)F (ω)dω

ff
(11)

where F (ω) =

Z π

−π

|H(θ)|2Sxx(ω − θ)dθ

subject to Eqn.(10) and that Φrr(ω) can be achieved by a binary
random process. Without the binary constraint, an optimal solution
can be found, taking the form of two appropriately scaled impulses
at ω0 = arg minω F (ω),

Φrr(ω) = 2πσ2
r

„
1

2
δ(ω − ω0) +

1

2
δ(ω + ω0)

«
(12)

Unfortunately, except in certain special cases, the power spec-
trum of Eqn.(12) cannot be achieved by a binary process. More
generally, not all covariance spectra are achievable using binary pro-
cesses. The set of achievable spectra has been studied in [6, 7]. Un-
fortunately, this set is not tractable for optimization.

3.2. Generating Binary Processes for SRS

The optimization of Eqn.(11) can be simpli ed by assuming a para-
metric model for r[n]. Though there are numerous techniques to
generate binary processes, most do not give a tractable expression
for the resulting covariance spectrum Φrr(ω). Consequently, opti-
mization for use in SRS is dif cult.

A recent model, presented in [8], alleviates this problem. It can
generate auto-regressive (AR) binary processes with a known covari-
ance spectrum. The basic model is presented for completeness, for a
more detailed description, the reader is referred to [8].

The AR binary process, r[n], is generated iteratively from p pre-
vious samples, r[n− 1], r[n− 2], . . . , r[n− p] as follows,

1. The bias, rb[n], for the generation of r[n] is computed ac-
cording to the relationship:

rb[n] = μ +

pX
k=1

ak(r[n− k]− μ) (13)

where μ is the desired mean of r[n] and the ak are parameters
of the algorithm.

2. The sample r[n] is randomly generated from a binary distri-
bution biased by rb[n] as follows:

r[n] =

j
1 with probability rb[n]
0 with probability 1− rb[n]

(14)
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In steady-state, this process is wide-sense stationary with mean
μ. The auto-covariance spectrum can be shown to be auto-regressive,
of the form,

Φrr(e
jω) =

A

|H(ejω)|2
=

A

|1−
Pp

k=1 ake−jωk|2
(15)

as long as the following constraint on the parameters ak and μ are
satis ed:  

pX
k=1

ak − 1

!
>

1

|1− 2μ|

 
pX

k=1

|ak| − 1

!
(16)

This constraint ensures that there is no over ow in Eqn.(13), i.e. the
bias, rb[n] is bounded between 0 and 1, [8].

By substituting Eqn.(15) into Eqn.(11), xing the number of pa-
rameters ak, and imposing the constraint of Eqn.(16), numerical op-
timization can be used to solve for the optimal values of ak. SRS
using the resulting process r[n] will have MSE lower than white
SRS, and in most cases, even lower than aliased uniform sampling.
Section 5 illustrates an example of optimizing a two-pole binary AR
process for use in SRS.

4. FILTERED RANDOMIZED SAMPLING

FRS is an extension of SRS that incorporates a pre- lter and a post-
lter. The lters offer extra degrees of freedom that can be used to
further reduce the MSE. There are a number of possible FRS solu-
tions, depending on the constraints imposed on the lters and the
sampling process. In this paper, for the sake of brevity, we focus on
one particular solution, denoted distortion-free white FRS (DFW-
FRS).

4.1. Distortion-Free White FRS

The DFW-FRS solution has two constraints. First, the sampling pro-
cess, r[n], is restricted to be white. Though non-white sampling
processes could achieve a lower MSE, restricting r[n] to be white
signi cantly simpli es the resulting optimization. In addition, white
FRS gives an upper-bound on optimal FRS performance for non-
white processes, much like white-SRS does for non-white SRS per-
formance. Future work will address distortion-free FRS with non-
white sampling processes.

Secondly, DFW-FRS imposes an invertibility constraint, where
the lters g1[n] and g2[n] are constrained to be inverses of one an-
other. This ensures that the error, e[n], is unbiased and uncorrelated
with the input, like in SRS. Mathematically, the output of the FRS
system is,

ŷ = μ(h ∗ g2 ∗ g1 ∗ x) + h ∗ g2 ∗ ((g1 ∗ x)r0) (17)

The dependence on n has been dropped for notational clarity.
Collecting terms, the error, e[n] = y[n]− ŷ[n], can be expressed as,

e = μ (h ∗ g1 ∗ g2 − h) ∗ x| {z }
u[n]

+ h ∗ g2 ∗ ((g1 ∗ x)r0)| {z }
v[n]

(18)

By choosing,

h[n] ∗ g1[n] ∗ g2[n] = h[n] (19)

the term u[n] = 0. Consequently, e[n] = v[n]. Since E{r0[n]} =
0, it is straightforward to show that E{v[n]} = 0 and Kxv[m] = 0.
The error is thus unbiased and uncorrelated with the input.

4.2. MinimumMSE DFW-FRS Solution

Since r[n] is restricted to be a white process, i.e. Krr[m] = σ2
rδ[m],

de ning p[n] = g1[n] ∗ r0[n] and given the constraint of Eqn.(19),
an expression for the error power spectrum can be derived directly
from Eqn.(18) assuming e[n] = v[n],

See(ω) = σ2
rσ2

p|G2(ω)|2|H(ω)|2 (20)

where σ2
p denotes the variance of p[n]. It can be expressed as the

area under Spp(ω),

σ2
p =

1

2π

Z π

−π

|G1(ω)|2Sxx(ω)dω (21)

In what follows, H(ω) is assumed to be a non-invertible lter
with a passband for |ω| < ωp and a stopband for ωp < |ω| < π.

By combining Eqns. (20) and (21), and incorporating the con-
straint of Eqn. (19), the MSE objective function can be expressed in
the passband as an optimization over |G1(ω)|2,

min
|G1(ω)|2

σ2
r

 Z ωp

−ωp

|G1(ω)|2Sxx(ω)dω

! Z ωp

−ωp

|H(ω)|2

|G1(ω)|2
dω

!
(22)

with the understanding that G1(ω) = G2(ω) = 0 in the stop-
band. Assuming that both integrands in Eqn.(22) are in L2(ωp),
the space of nite-energy sequences band-limited to ωp, the MSE
can be bounded below using the Cauchy-Schwartz inequality,

 Z ωp

−ωp

|V1(ω)|2dω

! Z ωp

−ωp

|V2(ω)|2dω

!
≥

˛̨̨
˛̨Z ωp

−ωp

V ∗1 (ω)V2(ω)dω

˛̨̨
˛̨2 (23)

This lower bound is met with equality if and only if V1(ω) =
αV2(ω). Applying this relation to the integrands in Eqn.(22), the
optimal lters are,

|G1(ω)|2 = α
|H(ω)|p
Sxx(ω)

(24)

|G2(ω)|2 =
1

α

p
Sxx(ω)

|H(ω)|
(25)

up to an scale factor α. From the Cauchy-Schwartz inequality, the
minimum MSE is,

E = σ2
r

 Z ωp

−ωp

p
Sxx(ω)|H(ω)|dω

!2

(26)

A non-trivial solution exists becauseG1(ω) is coupled toG2(ω)
through the constraint of Eqn.(19). Otherwise the error could be
made arbitrarily small by scaling G2(ω). The fact that |G1(ω)|2 =
1/|G2(ω)|2 ampli es the total error. These two competing effects
minimize each other when the spectral shapes are chosen as Eqns.(24)
and (25). Section 5 illustrates an example of DFW-FRS.
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5. NUMERICAL EXPERIMENTS

In the following MATLAB simulations, we assume perfect knowl-
edge of Sxx(ω). In practice of course, the power-spectrum of the
input must be estimated from measurements or derived using prior
information. The process x[n] is simulated by shaping white Gaus-
sian noise through a lter, S(z),

S(z) =
(z − z0)

(z − p1)(z − p∗1)(z − p2)(z − p∗2)
(27)

where z0 = 0.98, p1 = 0.9ejπ/8, and p2 = 0.9ej3π/8. The
power spectrum is Sxx(ω) = S(z)S(z−1). The reconstruction l-
ter, H(ω), is a 2048-point FIR lter designed by applying a Ham-
ming window to an ideal LPF with cutoff at π/2. The sampling rate
is xed to μ = 1/3 < 1/2. Thus, there is aliasing.

N = 250, 000 samples of the additive error before ltering with
H(ω), w[n] = x[n]r0[n], are generated for each test case. Peri-
odogram averaging with a Hamming window of size 1024 with 50%
overlap is used to approximate 1024 samples of the power spectrum
See(ω). This estimate is summed and normalized to calculate the
empirical MSE.

Fig. 2(a) shows the result of uniform sampling at rate μ = 1/3.
Note the strong aliases in the band of interest.

Fig 2(b) shows the result of SRS sampling with a white process
of rate μ = 1/3. As predicted, the noise has a at power spectrum.

Fig 2(c) shows the result of non-white SRS sampling with two-
pole binary AR process. The sampling process is generated ac-
cording to the model of [8], with parameters a1 = −0.1232 and
a2 = 0.7505. These values are found through numerical optimiza-
tion of Eqn.(11) for this speci c H(ω) and Sxx(ω). Note how the
noise has been shaped out of band, so that the MSE is reduced be-
yond both white SRS and aliased uniform sampling.

Fig 2(d) shows the result of DFW-FRS using the optimal MSE
lters. The lters of Eqns.(24) and (25) are approximated using a

2048-tap FIR lter, computed using the inverse DFT of the sampled
spectra of Sxx(ω) andH(ω). For this example, the DFW-FRSMSE
is lower than that of white SRS, but not as low as non-white SRS
using a two-pole binary AR sampling process.
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(a) Uniform. Emp. MSE = 5.02, Theor. MSE = 5.02

(b) White SRS. Emp. MSE = 6.94 , Theor. MSE = 6.89

(c) Binary AR SRS. Emp. MSE = 3.59 , Theor. MSE = 3.54

(d) Optimal FRS. Emp. MSE = 5.50 , Theor. MSE = 5.49

Fig. 2. Randomized sampling with Sxx(z) de ned in Eqn.(27) and
average sampling rate xed to μ = 1/3. Empirical and theoreti-
cal plots of Sxx(ω) are shown. Empirical and theoretical plots of
Sww(ω), the error spectra before ltering with H(ω), are shown.
Gray regions denote the stop-band of H(ω). White regions denote
the pass-band of H(ω). The MSE is the area of the error power
spectrum in the white region.

III ­ 1496


